
Embedded IDE Link™ 4
User’s Guide

For Use with Texas Instruments’ Code Composer Studio™

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Embedded IDE Link™ User’s Guide

© COPYRIGHT 2002–2010 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
July 2002 Online only New for Version 1.0 (Release 13)
October 2002 Online only Revised for Version 1.1
May 2003 Online only Revised for Version 1.2
September 2003 Online only Revised for Version 1.3 (Release 13SP1+)
June 2004 Online only Revised for Version 1.3.1 (Release 14)
October 2004 Online only Revised for Version 1.3.2 (Release 14SP1)
December 2004 Online only Revised for Version 1.4 (Release 14SP1+)
March 2005 Online only Revised for Version 1.4.1 (Release 14SP2)
September 2005 Online only Revised for Version 1.4.2 (Release 14SP3)
March 2006 Online only Revised for Version 1.5 (Release 2006a)
April 2006 Online only Revised for Version 2.0 (Release 2006a+)
September 2006 Online only Revised for Version 2.1 (Release 2006b)
March 2007 Online only Revised for Version 3.0 (Release 2007a)
September 2007 Online only Revised for Version 3.1 (Release 2007b)
March 2008 Online only Revised for Version 3.2 (Release 2008a)
October 2008 Online only Revised for Version 3.3 (Release 2008b)
March 2009 Online only Revised for Version 3.4 (Release 2009a)
September 2009 Online only Revised for Version 4.0 (Release 2009b)
March 2010 Online only Revised for Version 4.1 (Release 2010a)

Contents

Getting Started

1
Product Overview . 1-2
Automation Interface . 1-3
Project Generator . 1-4
Verification . 1-5
Product Features Supported for Each Processor Family . . 1-5

Configuration Information . 1-6
Verifying Your Code Composer Studio Installation 1-6

Software Requirements . 1-8

Automation Interface

2
Getting Started with Automation Interface 2-2
Introducing the Automation Interface Tutorial 2-2
Selecting Your Processor . 2-6
Creating and Querying Objects for CCS IDE 2-8
Loading Files into CCS . 2-10
Working with Projects and Data . 2-12
Closing the Links or Cleaning Up CCS IDE 2-18

Getting Started with RTDX . 2-20
Introducing the Tutorial for Using RTDX 2-21
Creating the ticcs Objects . 2-26
Configuring Communications Channels 2-29
Running the Application . 2-31
Closing the Connections and Channels or Cleaning Up . . . 2-38
Listing Functions . 2-41

v

Constructing ticcs Objects . 2-42
Example — Constructor for ticcs Objects 2-42

ticcs Properties and Property Values 2-44

Overloaded Functions for ticcs Objects 2-45

ticcs Object Properties . 2-46
Quick Reference to ticcs Object Properties 2-46
Details About ticcs Object Properties 2-48

Managing Custom Data Types with the Data Type
Manager . 2-54
Adding Custom Type Definitions to MATLAB 2-56

Project Generator

3
Introducing Project Generator . 3-2

Project Generation and Board Selection 3-3

Project Generator Tutorial . 3-5
Creating the Model . 3-6
Adding the Target Preferences Block to Your Model 3-6
Specify Configuration Parameters for Your Model 3-10

Model Reference . 3-14
How Model Reference Works . 3-14
Using Model Reference . 3-15
Configuring processors to Use Model Reference 3-17

vi Contents

Exporting Filter Coefficients from FDATool

4
About FDATool . 4-2

Preparing to Export Filter Coefficients to Code
Composer Studio Projects . 4-4
Features of a Filter . 4-4
Selecting the Export Mode . 4-5
Choosing the Export Data Type . 4-6

Exporting Filter Coefficients to Your Code Composer
Studio Project . 4-9
Exporting Filter Coefficients from FDATool to the CCS IDE
Editor . 4-9

Reviewing ANSI C Header File Contents 4-12

Preventing Memory Corruption When You Export
Coefficients to Processor Memory 4-15
Allocating Sufficient or Extra Memory for Filter
Coefficients . 4-15

Example: Using the Exported Header File to Allocate Extra
Processor Memory . 4-15

Replacing Existing Coefficients in Memory with Updated
Coefficients . 4-16

Example: Changing Filter Coefficients Stored on Your
Processor . 4-17

Block Reference

5
Block Library: idelinklib_ticcs . 5-2

Block Library: idelinklib_common 5-3

vii

Blocks — Alphabetical List

6

Supported Processors

A
Supported Platforms . A-2
Product Features Supported by Each Processor or
Family . A-2

Coemulation Support . A-3
Supported Processors and Simulators A-3
Custom Board Support . A-4

Supported Versions of Code Composer Studio A-5

Reported Limitations and Tips

B
Reported Issues . B-2
Demonstration Programs Do Not Run Properly Without
Correct GEL Files . B-3

Error Accessing type Property of ticcs Object Having Size
Greater Then 1 . B-3

Changing Values of Local Variables Does Not Take
Effect . B-4

Code Composer Studio Cannot Find a File After You Halt a
Program . B-4

C54x XPC Register Can Be Modified Only Through the PC
Register . B-6

Working with More Than One Installed Version of Code
Composer Studio . B-6

Changing CCS Versions During a MATLAB Session B-7
MATLAB Hangs When Code Composer Studio Cannot Find
a Board . B-7

Using Mapped Drives . B-9

viii Contents

Uninstalling Code Composer Studio 3.3 Prevents Embedded
IDE Link From Connecting . B-9

PostCodeGenCommand Commands Do Not Affect
Embedded IDE Link Projects . B-10

Index

ix

x Contents

1

Getting Started

• “Product Overview” on page 1-2

• “Configuration Information” on page 1-6

• “Software Requirements” on page 1-8

1 Getting Started

Product Overview

In this section...

“Automation Interface” on page 1-3

“Project Generator” on page 1-4

“Verification” on page 1-5

“Product Features Supported for Each Processor Family” on page 1-5

Embedded IDE Link™ software enables you to use MATLAB® functions to
communicate with Code Composer Studio™ software and with information
stored in memory and registers on a processor. With the ticcs objects, you
can transfer information to and from Code Composer Studio software and
with the embedded objects you get information about data and functions
stored in your signal processor memory and registers, as well as information
about functions in your project.

Embedded IDE Link lets you build, test, and verify automatically generated
code using MATLAB, Simulink®, Real-Time Workshop®, and the Code
Composer Studio integrated development environment. Embedded IDE
Link makes it easy to verify code executing within the Code Composer
Studio software environment using a model in Simulink software. This
processor-in-the-loop testing environment uses code automatically generated
from Simulink models by Real-Time Workshop® Embedded Coder™ software.
A wide range of Texas Instruments DSPs are supported:

• TI’s C2000™

• TI’s C5000™

• TI’s C6000™

With Embedded IDE Link , you can use MATLAB software and Simulink
software to interactively analyze, profile and debug processor-specific code
execution behavior within CCS. In this way, Embedded IDE Link automates
deployment of the complete embedded software application and makes it
easy for you to assess possible differences between the model simulation and
processor code execution results.

1-2

Product Overview

Embedded IDE Link consists of these components:

• Project Generator—add embedded framework code to the C code generated
from Simulink models, and package as a complete IDE project

• Automation Interface—use functions in the MATLAB command window to
access and manipulate data and files in the IDE and on the processor

• Verification—verify how your programs run on your processor

With Embedded IDE Link, you create objects that connect MATLAB software
to Code Composer Studio software. For information about using objects, refer
to “Software Requirements” on page 1-8.

Note Embedded IDE Link uses objects. You work with them the way you
use all MATLAB objects. You can set and get their properties, and use their
methods to change them or manipulate them and the IDE to which they refer.

The next sections describe briefly the components of Embedded IDE Link
software.

Automation Interface
The automation interface component is a collection of methods that use the
Code Composer Studio API to communicate between MATLAB software and
Code Composer Studio. With the interface, you can do the following:

• Automate complex tasks in the development environment by writing
MATLAB software scripts to communicate with the IDE, or debug and
analyze interactively in a live MATLAB software session.

• Automate debugging by executing commands from the powerful Code
Composer Studio software command language.

• Exchange data between MATLAB software and the processor running
in Code Composer Studio software.

• Set breakpoints, step through code, set parameters and retrieve profiling
reports.

1-3

1 Getting Started

• Automate project creation, including adding source files, include paths, and
preprocessor defines.

• Configure batch building of projects.

• Debug projects and code.

• Execute API Library commands.

The automation interface provides an application program interface (API)
between MATLAB software and Code Composer Studio. Using the API, you
can create new projects, open projects, transfer data to and from memory on
the processor, add files to projects, and debug your code.

Project Generator
The Project Generator component is a collection of methods that use the Code
Composer Studio API to create projects in Code Composer Studio and generate
code with Real-Time Workshop. With the interface, you can do the following:

• Automated project-based build process

Automatically create and build projects for code generated by Real-Time
Workshop or Real-Time Workshop Embedded Coder.

• Customize code generation

Use Embedded IDE Link with any Real-Time Workshop system target file
(STF) to generate processor-specific and optimized code.

• Customize the build process

• Automate code download and debugging

Rapidly and effortlessly debug generated code in the Code Composer
Studio software debugger, using either the instruction set simulator or
real hardware.

• Create and build CCS projects from Simulink software models. Project
Generator uses Real-Time Workshop software or Real-Time Workshop
Embedded Coder software to build projects that work with C2000™
software, C5000™ software, and C6000™ software processors.

1-4

Product Overview

• Highly customized code generation with the system target file
ccslink_ert.tlc and ccslink_grt.tlc that enable you to use the
Configuration Parameters in your model to customize your generated code.

• Automate the process of building and downloading your code to the
processor, and running the process on your hardware.

Verification
Verifying your processes and algorithms is an essential part of developing
applications. The components of Embedded IDE Link combine to provide the
following verification tools for you to apply as you develop your code:

Processor in the Loop Cosimulation
Use cosimulation techniques to verify generated code running in an
instruction set simulator or real processor environment.

Execution Profiling
Gather execution profiling timing measurements with Code Composer Studio
to establish the timing requirements of your algorithm. See “Profiling Code
Execution in Real-Time”.

Product Features Supported for Each Processor
Family
Within the collection of processors that Embedded IDE Link supports, some
subcomponents of the product do not apply. For the complete list of which
features work with each processor or family, refer to “Product Features
Supported by Each Processor or Family” on page A-2.

1-5

1 Getting Started

Configuration Information
To determine whether Embedded IDE Link is installed on your system, type
this command at the MATLAB software prompt.

ver

When you enter this command, MATLAB software displays a list of the
installed products. Look for a line similar to the following:

Embedded IDE Link Version 4.x (Release Specifier)

To get a bit more information about the software, such as the functions
provided and where to find demos and help, enter the following command at
the prompt:

help ticcs

If you do not see the listing, or MATLAB software does not recognize the
command, you need to install Embedded IDE Link. Without the software, you
cannot use MATLAB software with the objects to communicate with CCS.

Note For up-to-date information about system requirements, see “Software
Requirements” on page 1-8.

Verifying Your Code Composer Studio Installation
To verify that CCS is installed on your machine and has at least one board
configured, enter

ccsboardinfo

at the MATLAB software command line. With CCS installed and configured,
MATLAB software returns information about the boards that CCS recognizes
on your machine, in a form similar to the following listing.

Board Board Proc Processor Processor

Num Name Num Name Type

--- -------------------------------- --- -------------

1-6

Configuration Information

1 C6xxx Simulator (Texas Instrum .0 6701 TMS320C6701

0 C6x13 DSK (Texas Instruments) 0 CPU TMS320C6x1x

If MATLAB software does not return information about any boards, open
your CCS installation and use the Setup Utility in CCS to configure at least
one board.

As a final test, start CCS to ensure that it starts up successfully. For
Embedded IDE Link to operate with CCS, the CCS IDE must be able to
run on its own.

Embedded IDE Link uses objects to create:

• Connections to the Code Composer Studio Integrated Development
Environment (CCS IDE)

• Connections to the RTDX™ (RTDX) interface. This object is a subset of the
object that refers to the CCS IDE.

Concepts to know about the objects in this toolbox are covered in these
sections:

• Constructing Objects

• Properties and Property Values

• Overloaded Functions for Links

Refer to MATLAB Classes and Objects in your MATLAB documentation for
more details on object-oriented programming in MATLAB software.

Many of the objects use COM server features to create handles for working
with the objects. Refer to your MATLAB documentation for more information
about COM as used by MATLAB software.

1-7

1 Getting Started

Software Requirements
For detailed information about the software and hardware required to use
Embedded IDE Link software, refer to the Embedded IDE Link system
requirements areas on the MathWorks Web site:

• Requirements for Embedded IDE Link:
www.mathworks.com/products/ide-link/requirements.html

• Requirements for use with Code Composer Studio:
www.mathworks.com/products/ide-link/ti-adaptor.html

1-8

http://www.mathworks.com/products/ide-link/requirements.html
http://www.mathworks.com/products/ide-link/ti-adaptor.html

2

Automation Interface

• “Getting Started with Automation Interface” on page 2-2

• “Getting Started with RTDX” on page 2-20

• “Constructing ticcs Objects” on page 2-42

• “ticcs Properties and Property Values” on page 2-44

• “Overloaded Functions for ticcs Objects” on page 2-45

• “ticcs Object Properties” on page 2-46

• “Managing Custom Data Types with the Data Type Manager” on page 2-54

2 Automation Interface

Getting Started with Automation Interface

In this section...

“Introducing the Automation Interface Tutorial” on page 2-2

“Selecting Your Processor” on page 2-6

“Creating and Querying Objects for CCS IDE” on page 2-8

“Loading Files into CCS” on page 2-10

“Working with Projects and Data” on page 2-12

“Closing the Links or Cleaning Up CCS IDE” on page 2-18

Introducing the Automation Interface Tutorial
Embedded IDE Link provides a connection between MATLAB software and
a processor in CCS. You can use objects to control and manipulate a signal
processing application using the computational power of MATLAB software.
This approach can help you debug and develop your application. Another
possible use for automation is creating MATLAB scripts that verify and
test algorithms that run in their final implementation on your production
processor.

Before using the functions available with the objects, you must select a
processor to be your processor because any object you create is specific to
a designated processor and a designated instance of CCS IDE. Selecting
a processor is necessary for multiprocessor boards or multiple board
configurations of CCS.

When you have one board with a single processor, the object defaults to the
existing processor. For the objects, the simulator counts as a board; if you
have both a board and a simulator that CCS recognizes, you must specify
the processor explicitly.

To get you started using objects for CCS IDE software, Embedded IDE Link
includes a tutorial that introduces you to working with data and files. As you
work through this tutorial, you perform the following tasks that step you
through creating and using objects for CCS IDE:

2-2

Getting Started with Automation Interface

1 Select your processor.

2 Create and query objects to CCS IDE.

3 Use MATLAB software to load files into CCS IDE.

4 Work with your CCS IDE project from MATLAB software.

5 Close the connections you opened to CCS IDE.

The tutorial provides a working process (a workflow) for using Embedded IDE
Link and your signal processing programs to develop programs for a range
of Texas Instruments™ processors.

During this tutorial, you load and run a digital signal processing application
on a processor you select. The tutorial demonstrates both writing to memory
and reading from memory in the ““Working with Projects and Data” on page
2-12” portion of the tutorial.

You can use the read and write methods, as described in this tutorial, to read
and write data to and from your processor.

The tutorial covers the object methods and functions for Embedded IDE Link.
The functions listed in the first table apply to CCS IDE independent of the
objects — you do not need an object to use these functions. The methods
listed in the second and third table requires a ticcs object that you use in the
method syntax:

Functions for Working With Embedded IDE Link
The following functions do not require a ticcs object as an input argument:

Function Description

ccsboardinfo Return information about the boards that CCS
IDE recognizes as installed on your PC.

ticcs Construct an object to communicate with
CCS IDE. When you construct the object you
specify the processor board and processor.

2-3

2 Automation Interface

Methods for Working with ticcs Objects
The methods in the following table require a ticcs object as an input
argument:

Method Description

Return the address and page for an
entry in the symbol table in CCS
IDE.

display Display the properties of an object to
CCS IDE and RTDX.

halt Terminate execution of a process
running on the processor.

info Return information about the
processor or information about open
RTDX channels.

info Test whether your processor
supports RTDX communications.

isrunning Test whether the processor is
executing a process.

read Retrieve data from memory on the
processor.

restart Restore the program counter (PC)
to the entry point for the current
program.

run Execute the program loaded on the
processor.

visible Set whether CCS IDE window is
visible on the desktop while CCS
IDE is running.

write Write data to memory on the
processor.

2-4

Getting Started with Automation Interface

Methods for Embedded Objects
The methods in the following table enable you to manipulate programs and
memory with an embedded object:

Method Description

list Return various information listings
from Code Composer Studio
software.

read Read the information at the location
accessed by an object into MATLAB
software as numeric values.
Demonstrated with a numeric,
string, structure, and enumerated
objects.

write Write to the location referenced
by an object. Demonstrated with
numeric, string, structure, and
enumerated objects.

Running Code Composer Studio Software on Your Desktop
— Visibility
When you create a ticcs object , Embedded IDE Link starts CCS in the
background.

When CCS IDE is running in the background, it does not appear on your
desktop, in your task bar, or on the Applications page in the Task Manager.
It does appear as a process, cc_app.exe, on the Processes tab in Microsoft®

Windows Task Manager.

You can make the CCS IDE visible with the function visible. The function
isvisible returns the status of the IDE—whether it is visible on your desktop.
To close the IDE when it is not visible and MATLAB software is not running,
use the Processes tab in Microsoft Windows Task Manager and look for
cc_app.exe.

If a link to CCS IDE exists when you close CCS, the application does not close.
Microsoft Windows software moves it to the background (it becomes invisible).

2-5

2 Automation Interface

Only after you clear all links to CCS IDE, or close MATLAB software, does
closing CCS IDE unload the application. You can see if CCS IDE is running in
the background by checking in the Microsoft Windows Task Manager. When
CCS IDE is running, the entry cc_app.exe appears in the Image Name list
on the Processes tab.

When you close MATLAB software while CCS IDE is not visible, MATLAB
software closes CCS if it started the IDE. This happens because the operating
system treats CCS as a subprocess in MATLAB software when CCS is not
visible. Having MATLAB software close the invisible IDE when you close
MATLAB software prevents CCS from remaining open. You do not need to
close it using Microsoft Windows Task Manager.

If CCS IDE is not visible when you open MATLAB software, closing MATLAB
software leaves CCS IDE running in an invisible state. MATLAB software
leaves CCS IDE in the visibility and operating state in which it finds it.

Running the Interactive Tutorial
You have the option of running this tutorial from the MATLAB software
command line or entering the functions as described in the following tutorial
sections.

To run the tutorial in MATLAB software, click run ccstutorial. This
command opens the tutorial in an interactive mode where the tutorial
program provides prompts and text descriptions to which you respond to move
to the next portion of the lesson. The interactive tutorial covers the same
information provided by the following tutorial sections. You can view the
tutorial file by clicking ccstutorial.m.

Selecting Your Processor
Links for CCS IDE provides two tools for selecting a board and processor in
multiprocessor configurations. One is a command line tool called ccsboardinfo
which prints a list of the available boards and processors. So that you can
use this function in a script, ccsboardinfo can return a MATLAB software
structure that you use when you want your script to select a board without
your help.

2-6

Getting Started with Automation Interface

Note The board and processor you select is used throughout the tutorial.

1 To see a list of the boards and processors installed on your PC, enter the
following command at the MATLAB software prompt:

ccsboardinfo

MATLAB software returns a list that shows you all the boards and
processors that CCS IDE recognizes as installed on your system.

2 To use the Selection Utility, boardprocsel, to select a board, enter

[boardnum,procnum] = boardprocsel

When you use boardprocsel, you see a dialog box similar to the following.
Note that some entries vary depending on your board set.

3 Select a board name and processor name from the lists.

You are selecting a board and processor number that identifies your
particular processor. When you create the object for CCS IDE in the
next section of this tutorial, the selected board and processor become the
processor of the object.

2-7

2 Automation Interface

4 Click Done to accept your board and processor selection and close the
dialog box.

boardnum and procnum now represent the Board name and Processor
name you selected — boardnum = 1 and procnum = 0

Creating and Querying Objects for CCS IDE
In this tutorial section, you create the connection between MATLAB software
and CCS IDE. This connection, or object, is a MATLAB software object that
you save as variable cc.

You use function ticcs to create objects. When you create objects, ticcs input
arguments let you define other object property values, such as the global
timeout. Refer to the ticcs reference documentation for more information
on these input arguments.

Use the generated object cc to direct actions to your processor. In the
following tasks, cc appears in all function syntax that interact with CCS
IDE and the processor:

1 Create an object that refers to your selected board and processor. Enter the
following command at the prompt.

cc=ticcs('boardnum',boardnum,'procnum',procnum)

If you were to watch closely, and your machine is not too fast, you see Code
Composer Studio software appear briefly when you call ticcs. If CCS IDE
was not running before you created the new object, CCS starts and runs in
the background.

2 Enter visible(cc,1) to force CCS IDE to be visible on your desktop.

Usually, you need to interact with Code Composer Studio software while
you develop your application. The first function in this tutorial, visible,
controls the state of CCS on your desktop. visible accepts Boolean inputs
that make CCS either visible on your desktop (input to visible = 1) or
invisible on your desktop (input to visible = 0). For this tutorial, use
visible to set the CCS IDE visibility to 1.

3 Next, enter display(cc) at the prompt to see the status information.

2-8

Getting Started with Automation Interface

TICCS Object:
API version : 1.0
Processor type : C67
Processor name : CPU
Running? : No
Board number : 0
Processor number : 0
Default timeout : 10.00 secs

RTDX channels : 0

Embedded IDE Link provides three methods to read the status of a board
and processor:

• info— Return a structure of testable board conditions.

• display — Print information about the processor.

• isrunning— Return the state (running or halted) of the processor.

• info — Return whether the hardware supports RTDX.

4 Type linkinfo = info(cc).

The cc link status information provides information about the hardware as
follows:

linkinfo =

boardname: 'C6711 Device Simulator'
procname: 'CPU_1'

isbigendian: 0
family: 320

subfamily: 103
revfamily: 11

processortype: 'simulator'
revsilicon: 0

timeout: 10

5 Check whether the processor is running by entering

runstatus = isrunning(cc)

2-9

2 Automation Interface

MATLAB software responds, indicating that the processor is stopped, as
follows:

runstatus =

0

6 At last, verify that the processor supports RTDX communications by
entering

usesrtdx = isrtdxcapable(cc)
usesrtdx =

1

Loading Files into CCS
You have established the connection to a processor and board. Using three
methods you learned about the hardware, whether it was running, its type,
and whether CCS IDE was visible. Next, the processor needs something to do.

In this part of the tutorial, you load the executable code for the processor CPU
in CCS IDE. Embedded IDE Link includes a CCS project file. Through the
next tasks in the tutorial, you locate the tutorial project file and load it into
CCS IDE. The open method directs CCS to load a project file or workspace file.

Note CCS has workspace and workspace files that are different from
the MATLAB workspace files and workspace. Remember to monitor both
workspaces.

After you have executable code running on your processor, you can exchange
data blocks with it. Exchanging data is the purpose of the objects provided by
Embedded IDE Link software.

1 To load the appropriate project file to your processor, enter the following
command at the MATLAB software prompt. getdemoproject is a
specialized function for loading Embedded IDE Link demo files. It is not
supported as a standard Embedded IDE Link function.

2-10

Getting Started with Automation Interface

demopjt= getDemoProject(cc,'ccstutorial')

demopjt.ProjectFile

ans =

C:\Temp\EmbIDELinkCCDemos_v4.1\ccstutorial\c6x\c67x\ccstut.pjt

demoPjt.DemoDir

ans =

C:\Temp\EmbIDELinkCCDemos_v4.1\ccstutorial\c6x\c67x

Your paths may be different if you use a different processor. Note where
the software stored the demo files on your machine. In general, Embedded
IDE Link software stores the demo project files in

EmbIDELinkCCDemos_v#.#

Embedded IDE Link creates this directory in a location where you have
write permission. There are two locations where Embedded IDE Link
software tries to create the demo directory, in the following order:

a In a temporary directory on your C drive, such as C:\temp\.

b If Embedded IDE Link software cannot use the temp directory, you see a
dialog box that asks you to select a location to store the demos.

2 Enter the following command at the MATLAB command prompt to build
the processor executable file in CCS IDE.

build(cc,'all',20)

You may get an error related to one or more missing .lib files. If you
installed CCS IDE in a directory other than the default installation
directory, browse in your installation directory to find the missing file or
files. Refer to the path in the error message as an indicator of where to
find the missing files.

2-11

2 Automation Interface

3 Change your working directory to the demo directory and enter
load(cc,'projectname.out') to load the processor execution file, where
projectname is the tutorial you chose, such as ccstut_67x.

You have a loaded program file and associated symbol table to the IDE
and processor.

4 To determine the memory address of the global symbol ddat, enter the
following command at the prompt:

ddata = address(cc,'ddat')
ddata =

1.0e+009 *

2.1475 0

Your values for ddata may be different depending on your processor.

Note The symbol table is available after you load the program file into the
processor, not after you build a program file.

5 To convert ddata to a hexadecimal string that contains the memory address
and memory page, enter the following command at the prompt:

dec2hex(ddata)

MATLAB software displays the following response, where the memory page
is 0x00000000 and the address is 0x80000010.

ans =

80000010
00000000

Working with Projects and Data
After you load the processor code, you can use Embedded IDE Link functions
to examine and modify data values in the processor.

2-12

Getting Started with Automation Interface

When you look at the source file listing in the CCS IDE Project view window,
there should be a file named ccstut.c. Embedded IDE Link ships this file
with the tutorial and includes it in the project.

ccstut.c has two global data arrays — ddat and idat— that you declare and
initialize in the source code. You use the functions read and write to access
these processor memory arrays from MATLAB software.

Embedded IDE Link provides three functions to control processor execution
— run, halt, and restart.

1 To demonstrate these commands, use the following function to add a
breakpoint to line 64 of ccstut.c.

insert(cc,'ccstut.c',64)

Line 64 is

printf("Embedded IDE Link: Tutorial - Memory Modified by Matlab!\n");

For information about adding breakpoints to a file, refer to insert in the
online Help system. Then proceed with the tutorial.

2 To demonstrate the new functions, try the following functions.

halt(cc) % Halt the processor.

restart(cc) % Reset the PC to start of program.

run(cc,'runtohalt',30); % Wait for program execution to stop at

% breakpoint (timeout = 30 seconds).

When you switch to viewing CCS IDE, you see that your program stopped
at the breakpoint you inserted on line 64, and the program printed the
following messages in the CCS IDE Stdout tab. Nothing prints in the
MATLAB command window:

Embedded IDE Link: Tutorial - Initialized Memory
Double Data array = 16.3 -2.13 5.1 11.8
Integer Data array = -1-508-647-7000 (call me anytime!)

2-13

2 Automation Interface

3 Before you restart your program (currently stopped at line 64), change
some values in memory. Perform one of the following procedures based on
your processor.

C5xxx processor family— Enter the following functions to demonstrate
the read and write functions.

a Enter ddatv = read(cc,address(cc,'ddat'),'double',4).

MATLAB software responds with

ddatv =

16.3000 -2.1300 5.1000 11.8000

b Enter idatv = read(cc,address(cc,'idat'),'int16',4).

Now MATLAB software responds

idatv =

-1 508 647 7000

If you used 8-bit integers (int8), the returned values would be incorrect.

idatv=read(cc,address(cc,'idat'),'int8',4)

idatv =

1 0 -4 1

c You can change the values stored in ddat by entering
write(cc,address(cc,'ddat'),double([pi 12.3 exp(-1)...
sin(pi/4)]))

The double argument directs MATLAB software to write the values to
the processor as double-precision data.

d To change idat, enter

write(cc,address(cc,'idat'),int32([1:4]))

2-14

Getting Started with Automation Interface

Here you write the data to the processor as 32-bit integers (convenient
for representing phone numbers, for example).

e Start the program running again by entering the following command:

run(cc,'runtohalt',30);

The Stdout tab in CCS IDE reveals that ddat and idat contain new
values. Next, read those new values back into MATLAB software.

f Enter ddatv = read(cc,address(cc,'ddat'),'double',4).

ddatv =

3.1416 12.3000 0.3679 0.7071

ddatv contains the values you wrote in step c.

g Verify that the change to idatv occurred by entering the following
command at the prompt:

idatv = read(cc,address(cc,'idat'),'int16',4)

MATLAB software returns the new values for idatv.

idatv =

1 2 3 4

h Use restart to reset the program counter for your program to the
beginning. Enter the following command at the prompt:

restart(cc);

C6xxx processor family— Enter the following commands to demonstrate
the read and write functions.

a Enter ddatv = read(cc,address(cc,'ddat'),'double',4).

MATLAB software responds with

ddatv =

16.3000 -2.1300 5.1000 11.8000

2-15

2 Automation Interface

b Enter idatv = read(cc,address(cc,'idat'),'int16',4).

MATLAB software responds

idatv =

-1 508 647 7000

If you used 8-bit integers (int8), the returned values would be incorrect.

idatv=read(cc,address(cc,'idat'),'int8',4)

idatv =

1 0 -4 1

c Change the values stored in ddat by entering
write(cc,address(cc,'ddat'),double([pi 12.3 exp(-1)...
sin(pi/4)]))

The double argument directs MATLAB software to write the values to
the processor as double-precision data.

d To change idat, enter the following command:

write(cc,address(cc,'idat'),int32([1:4]))

In this command, you write the data to the processor as 32-bit integers
(convenient for representing phone numbers, for example).

e Next, start the program running again by entering the following
command:

run(cc,'runtohalt',30);

The Stdout tab in CCS IDE reveals that ddat and idat contain new
values. Read those new values back into MATLAB software.

f Enter ddatv = read(cc,address(cc,'ddat'),'double',4).

ddatv =

3.1416 12.3000 0.3679 0.7071

2-16

Getting Started with Automation Interface

Verify that ddatv contains the values you wrote in step c.

g Verify that the change to idatv occurred by entering the following
command:

idatv = read(cc,address(cc,'idat'),'int32',4)

MATLAB software returns the new values for idatv.

idatv =

1 2 3 4

h Use restart to reset the program counter for your program to the
beginning. Enter the following command at the prompt:

restart(cc);

4 Embedded IDE Link offers more functions for reading and writing data to
your processor. These functions let you read and write data to the processor
registers: regread and regwrite. They let you change variable values on the
processor in real time. The functions behave slightly differently depending
on your processor. Select one of the following procedures to demonstrate
regread and regwrite for your processor.

C5xxx processor family — Most registers are memory-mapped and
available using read and write. However, the PC register is not memory
mapped. To access this register, use the special functions — regread
and regwrite. The following commands demonstrate how to use these
functions to read and write to the PC register.

a To read the value stored in register PC, enter the following command
at the prompt to indicate to MATLAB software the data type to read.
The input string binary indicates that the PC register contains a value
stored as an unsigned binary integer.

cc.regread('PC','binary')

MATLAB software displays

ans =

33824

2-17

2 Automation Interface

b To write a new value to the PC register, enter the following command.
This time, the binary input argument tells MATLAB software to write
the value to the processor as an unsigned binary integer. Notice that you
used hex2dec to convert the hexadecimal string to decimal.

cc.regwrite('PC',hex2dec('100'),'binary')

c Verify that the PC register contains the value you wrote.

cc.regread('PC','binary')

C6xxx processor family — regread and regwrite let you access the
processor registers directly. Enter the following commands to get data into
and out of the A0 and B2 registers on your processor.

a To retrieve the value in register A0 and store it in a variable in your
MATLAB workspace. Enter the following command:

treg = cc.regread('A0','2scomp');

treg contains the two’s complement representation of the value in A0.

b To retrieve the value in register B2 as an unsigned binary integer, enter
the following command:

cc.regread('B2','binary');

c Next, enter the following command to use regwrite to put the value in
treg into register A2.

cc.regwrite('A2',treg,'2scomp');

CCS IDE reports that A0, B2, and A2 have the values you expect. Select
View > CPU Registers > Core Registers from the CCS IDE menu
bar to list the processor registers.

Closing the Links or Cleaning Up CCS IDE
Objects that you create in Embedded IDE Link software have COM handles
to CCS. Until you delete these handles, the CCS process (cc_app.exe in the
Microsoft Windows Task Manager) remains in memory. Closing MATLAB
software removes these COM handles, but there may be times when you want
to delete the handles without closing the application.

2-18

Getting Started with Automation Interface

Use clear to remove objects from your MATLAB workspace and to delete
handles they contain. clear all deletes everything in your workspace. To
retain your MATLAB software data while deleting objects and handles, use
clear objname. This applies to IDE handle objects you created with ticcs.
To remove the objects created during the tutorial, the tutorial program
executes the following command at the prompt:

clear cvar cfield uintcvar

This tutorial also closes the project in CCS with the following command:

close(cc,projfile,'project')

To delete your link to CCS, enter clear cc at the prompt.

Your development tutorial using Code Composer Studio IDE is done.

During the tutorial you

1 Selected your processor.

2 Created and queried links to CCS IDE to get information about the link
and the processor.

3 Used MATLAB software to load files into CCS IDE, and used MATLAB
software to run that file.

4 Worked with your CCS IDE project from MATLAB software by reading
and writing data to your processor, and changing the data from MATLAB
software.

5 Created and used the embedded objects to manipulate data in a C-like way.

6 Closed the links you opened to CCS IDE.

2-19

2 Automation Interface

Getting Started with RTDX

In this section...

“Introducing the Tutorial for Using RTDX” on page 2-21

“Creating the ticcs Objects” on page 2-26

“Configuring Communications Channels” on page 2-29

“Running the Application” on page 2-31

“Closing the Connections and Channels or Cleaning Up” on page 2-38

“Listing Functions” on page 2-41

Support for using RTDX with C5000 and C6000 processors will be removed in
a future release.

Embedded IDE Link and the objects for CCS IDE and RTDX speed and
enhance your ability to develop and deploy digital signal processing systems
on Texas Instruments processors. By using MATLAB software and Embedded
IDE Link, your MathWorks™ tools, CCS IDE and RTDX work together to help
you test and analyze your processing algorithms in your MATLAB workspace.

In contrast to CCS IDE, using links for RTDX lets you interact with your
process in real time while it’s running on the processor. Across the connection
between MATLAB software and CCS, you can:

• Send and retrieve data from memory on the processor

• Change the operating characteristics of the program

• Make changes to algorithms as needed without stopping the program or
setting breakpoints in the code

Enabling real-time interaction lets you more easily see your process or
algorithm in action, the results as they develop, and the way the process runs.

This tutorial assumes you have Texas Instruments’ Code Composer Studio™
software and at least one DSP development board. You can use the
hardware simulator in CCS IDE to run this tutorial. The tutorial uses the
TMS320C6711 DSK as the board, with the C6711 DSP as the processor.

2-20

Getting Started with RTDX™

After you complete the tutorial, either in the demonstration form or by
entering the functions along with this text, you are ready to begin using
RTDX with your applications and hardware.

Introducing the Tutorial for Using RTDX
Digital signal processing development efforts begin with an idea for processing
data; an application area, such as audio or wireless communications or
multimedia computing; and a platform or hardware to host the signal
processing. Usually these processing efforts involve applying strategies like
signal filtering, compression, and transformation to change data content; or
isolate features in data; or transfer data from one form to another or one
place to another.

Developers create algorithms they need to accomplish the desired result. After
they have the algorithms, they use models and DSP processor development
tools to test their algorithms, to determine whether the processing achieves
the goal, and whether the processing works on the proposed platform.

Embedded IDE Link and the links for RTDX and CCS IDE ease the job of
taking algorithms from the model realm to the real world of the processor
on which the algorithm runs.

RTDX and links for CCS IDE provide a communications pathway to
manipulate data and processing programs on your processor. RTDX offers
real-time data exchange in two directions between MATLAB software and
your processor process. Data you send to the processor has little effect on the
running process and plotting the data you retrieve from the processor lets you
see how your algorithms are performing in real time.

To introduce the techniques and tools available in Embedded IDE Link for
using RTDX, the following procedures use many of the methods in the link
software to configure the processor, open and enable channels, send data to
the processor, and clean up after you finish your testing. Among the functions
covered are:

2-21

2 Automation Interface

Functions From Objects for CCS IDE

Function Description

ticcs Create connections to CCS IDE and
RTDX.

cd Change your CCS IDE working
directory from MATLAB software.

open Load program files in CCS IDE.

run Run processes on the processor.

Functions From the RTDX Class

Function Description

close Close the RTDX links between
MATLAB software and your
processor.

configure Determine how many channel
buffers to use and set the size of each
buffer.

disable Disable the RTDX links before you
close them.

display Return the properties of an object
in formatted layout. When you omit
the closing semicolon on a function,
disp (a built-in function) provides
the default display for the results of
the operation.

enable Enable open channels so you can use
them to send and retrieve data from
your processor.

isenabled Determine whether channels are
enabled for RTDX communications.

2-22

Getting Started with RTDX™

Function Description

isreadable Determine whether MATLAB
software can read the specified
memory location.

iswritable Determine whether MATLAB
software can write to the processor.

msgcount Determine how many messages are
waiting in a channel queue.

open Open channels in RTDX.

readmat Read data matrices from the
processor into MATLAB software as
an array.

readmsg Read one or more messages from a
channel.

writemsg Write messages to the processor over
a channel.

This tutorial provides the following workflow to show you how to use many
of the functions in the links. By performing the steps provided, you work
through many of the operations yourself. The tutorial follows the general
task flow for developing digital signal processing programs through testing
with the links for RTDX.

Within this set of tasks, numbers 1, 2, and 4 are fundamental to all
development projects. Whenever you work with MATLAB software and
objects for RTDX, you perform the functions and tasks outlined and presented
in this tutorial. The differences lie in Task 3. Task 3 is the most important for
using Embedded IDE Link to develop your processing system.

1 Create an RTDX link to your desired processor and load the program to
the processor.

All projects begin this way. Without the links you cannot load your
executable to the processor.

2 Configure channels to communicate with the processor.

2-23

2 Automation Interface

Creating the links in Task 1 did not open communications to the processor.
With the links in place, you open as many channels as you need to support
the data transfer for your development work. This task includes configuring
channel buffers to hold data when the data rate from the processor exceeds
the rate at which MATLAB software can capture the data.

3 Run your application on the processor. You use MATLAB software to
investigate the results of your running process.

4 Close the links to the processor and clean up the links and associated
debris left over from your work.

Closing channels and cleaning up the memory and links you created
ensures that CCS IDE, RTDX, and Embedded IDE Link are ready for the
next time you start development on a project.

This tutorial uses an executable program named rtdxtutorial_6xevm.out
as your application. When you use the RTDX and CCS IDE links to develop
your own applications, replace rtdxtutorial_6xevm.out in Task 3 with the
filename and path to your digital signal processing application.

You can view the tutorial file used here by clicking rtdxtutorial. To run this
tutorial in MATLAB software, click run rtdxtutorial.

2-24

Getting Started with RTDX™

Note To be able to open and enable channels over a link to RTDX, the
program loaded on your processor must include functions or code that define
the channels.

Your C source code might look something like this to create two channels,
one to write and one to read.

rtdx_CreateInputChannel(ichan); % processor reads from this.
rtdx_CreateOutputChannel(ochan); % processor writes to this.

These are the entries we use in int16.c (the source code that generates
rtdxtutorial_6xevm.out) to create the read and write channels.

If you are working with a model in Simulink software and using code
generation, use the To Rtdx and From Rtdx blocks in your model to add the
RTDX communications channels to your model and to the executable code
on your processor.

One more note about this tutorial. Throughout the code we use both the dot
notation (direct property referencing) to access functions and link properties
and the function form.

For example, use the following command to open and configure ichan for
write mode.

cc.rtdx.open('ichan','w');

You could use an equivalent syntax, the function form, that does not use
direct property referencing.

open(cc.rtdx,'ichan','w');

Or, use

open(rx,'ichan','w');

if you created an alias rx to the RTDX portion of cc, as shown by the following
command:

2-25

2 Automation Interface

rx = cc.rtdx;

Creating the ticcs Objects
With your processing model converted to an executable suitable for your
desired processor, you are ready to use the objects to test and run your model
on your processor. Embedded IDE Link and the objects do not distinguish
the source of the executable — whether you used Embedded IDE Link and
Real-Time Workshop, CCS IDE, or some other development tool to program
and compile your model to an executable does not affect the object connections.
So long as your ..out file is acceptable to the processor you select, Embedded
IDE Link provides the connection to the processor.

Note Program rtdxtutorial_6xevm.out uses the C6711. The executable is
compiled, built, and linked to run on the C6711 processor. To use the tutorial
without changes, specify your C6711 when you define the object properties
boardnum and procnum.

Before continuing with this tutorial, you must load a valid GEL file to
configure the EMIF registers of your processor and perform any required
processor initialization steps. Default GEL files provided by CCS are stored
in ..\cc\gel in the folder where you installed CCS software. Select File
> Load_GEL in CCS IDE to load the default GEL file that matches your
processor family, such as init6x0x.gel for the C6x0x processor family, and
your configuration.

Begin the process of getting your model onto the processor by creating a an
object that refers to CCS IDE. Start by clearing all existing handles and
setting echo on so you see functions execute as the program runs:

1 clear all; echo on;

clear all has the side effect of removing debugging breakpoints and
resetting persistent variables because function breakpoints and persistent
variables are cleared whenever the MATLAB file changes or is cleared.
Breakpoints within your executable remain after clear. Clearing the
MATLAB workspace does not affect your executable.

2 Now construct the link to your board and processor by entering

2-26

Getting Started with RTDX™

cc=ticcs('boardnum',0);

boardnum defines which board the new link accesses. In this example,
boardnum is 0. Embedded IDE Link connects the link to the first, and in
this case only, processor on the board. To find the boardnum and procnum
values for the boards and simulators on your system, use ccsboardinfo.
When you enter the following command at the prompt

ccsboardinfo

Embedded IDE Link returns a list like the following one that identifies the
boards and processors in your computer.

Board Board Proc Processor Processor

Num Name Num Name Type

1 C6xxx Simulator (Texas
Inst...

0 CPU TMS320C6211

0 C6701 EVM (Texas
Instruments)

0 CPU_1 TMS320C6701

3 To open and load the processor file, change the path for MATLAB software
to be able to find the file.

projname =

C:\Temp\EmbIDELinkCCDemos_v4.1\rtdxtutorial\c6x\c64xp\rtdxtut_sim.pjt

outFile =

C:\Temp\EmbIDELinkCCDemos_v4.1\rtdxtutorial\c6x\c64xp\rtdxtut_sim.out

processor_dir = demoPjt.DemoDir

processor_dir =

C:\Temp\EmbIDELinkCCDemos_v4.1\rtdxtutorial\c6x\c64xp

2-27

2 Automation Interface

% Go to processor directory

cd(cc,processor_dir);cd(cc,tgt_dir); % Or cc.cd(tgt_dir)

dir(cc); % Or cc.dir

To load the appropriate project file to your processor, enter the following
commands at the MATLAB software prompt. getDemoProject is a
specialized function for loading Embedded IDE Link demo files. It is not
supported as a standard Embedded IDE Link function.

demoPjt = getDemoProject(cc,'ccstutorial');

demoPjt.ProjectFile

ans =

C:\Temp\EmbIDELinkCCDemos_v4.1\ccstutorial\c6x\c64xp\ccstut.pjt

demoPjt.DemoDir

ans =

C:\Temp\EmbIDELinkCCDemos_v4.1\ccstutorial\c6x\c64xp

Notice where the demo files are stored on your machine. In general,
Embedded IDE Link software stores the demo project files in

EmbIDELinkCCDemos_v#.#

For example, if you are using version 4.1 of Embedded IDE Link software,
the project demos are stored in EmbIDELinkCCDemos_v4.1\. Embedded IDE
Link software creates this folder in a location on your machine where you
have write permission. Usually, there are two locations where Embedded
IDE Link software tries to create the demo folder, in the order shown.

a In a temporary folder on the C drive, such as C:\temp\.

b If Embedded IDE Link software cannot use the temp folder, you see a
dialog box that asks you to select a location to store the demos.

2-28

Getting Started with RTDX™

4 You have reset the folder path to find the tutorial file. Now open the .out
file that matches your processor type, such as rtdxtutorial_c67x.out or
rtdxtutorial_c64x.out.

cc.open('rtdxtutorial_67x.out')

Because open is overloaded for the CCS IDE and RTDX links, this may
seem a bit strange. In this syntax, open loads your executable file onto
the processor identified by cc. Later in this tutorial, you use open with a
different syntax to open channels in RTDX.

In the next section, you use the new link to open and enable communications
between MATLAB software and your processor.

Configuring Communications Channels
Communications channels to the processor do not exist until you open and
enable them through Embedded IDE Link and CCS IDE. Opening channels
consists of opening and configuring each channel for reading or writing, and
enabling the channels.

In the open function, you provide the channel names as strings for the channel
name property. The channel name you use is not random. The channel name
string must match a channel defined in the executable file. If you specify
a string that does not identify an existing channel in the executable, the
open operation fails.

In this tutorial, two channels exist on the processor — ichan and ochan.
Although the channels are named ichan for input channel and ochan for
output channel, neither channel is configured for input or output until you
configure them from MATLAB software or CCS IDE. You could configure
ichan as the output channel and ochan as the input channel. The links would
work just the same. For simplicity, the tutorial configures ichan for input
and ochan for output. One more note—reading and writing are defined as
seen by the processor. When you write data from MATLAB software, you
write to the channel that the processor reads, ichan in this case. Conversely,
when you read from the processor, you read from ochan, the channel that
the processor writes to:

2-29

2 Automation Interface

1 Configure buffers in RTDX to store the data until MATLAB software can
read it into your workspace. Often, MATLAB software cannot read data as
quickly as the processor can write it to the channel.

cc.rtdx.configure(1024,4); % define 4 channels of 1024 bytes each

Channel buffers are optional. Adding them provides a measure of insurance
that data gets from your processor to MATLAB software without getting
lost.

2 Define one of the channels as a write channel. Use ’ichan’ for the channel
name and ’w’ for the mode. Either ’w’ or ’r’ fits here, for write or read.

cc.rtdx.open('ichan','w');

3 Now enable the channel you opened.

cc.rtdx.enable('ichan');

4 Repeat steps 2 and 3 to prepare a read channel.

cc.rtdx.open('ochan','r');
cc.rtdx.enable('ochan');

5 To use the new channels, enable RTDX by entering

cc.rtdx.enable;

You could do this step before you configure the channels — the order does
not matter.

6 Reset the global time-out to 20s to provide a little room for error. ticcs
applies a default timeout value of 10s. In some cases this may not be
enough.

cc.rtdx.get('timeout')
ans =

10
cc.rtdx.set('timeout', 20); % Reset timeout = 20 seconds

2-30

Getting Started with RTDX™

7 Check that the timeout property value is now 20s and that your object has
the correct configuration for the rest of the tutorial.

cc.rtdx

RTDX Object:
API version: 1.0
Default timeout: 20.00 secs
Open channels: 2

Running the Application
To this point you have been doing housekeeping functions that are common to
any application you run on the processor. You load the processor, configure
the communications, and set up other properties you need.

In this tutorial task, you use a specific application to demonstrate a few of
the functions available in Embedded IDE Link that let you experiment with
your application while you develop your prototype. To demonstrate the link
for RTDX readmat, readmsg, and writemsg functions, you write data to your
processor for processing, then read data from the processor after processing:

1 Restart the program you loaded on the processor. restart ensures the
program counter (PC) is at the beginning of the executable code on the
processor.

cc.restart

Restarting the processor does not start the program executing. You use run
to start program execution.

2 Type cc.run('run');

Using ’run’ for the run mode tells the processor to continue to execute the
loaded program continuously until it receives a halt directive. In this mode,
control returns to MATLAB software so you can work in MATLAB software
while the program runs. Other options for the mode are

• ’runtohalt’ — start to execute the program and wait to return control to
MATLAB software until the process reaches a breakpoint or execution
terminates.

2-31

2 Automation Interface

• ’tohalt’ — change the state of a running processor to ’runtohalt’ and
wait to return until the program halts. Use tohalt mode to stop the
running processor cleanly.

3 Type the following functions to enable the write channel and verify that the
enable takes effect.

cc.rtdx.enable('ichan');
cc.rtdx.isenabled('ichan')

If MATLAB software responds ans = 0 your channel is not enabled and
you cannot proceed with the tutorial. Try to enable the channel again and
verify the status.

4 Write some data to the processor. Check that you can write to the
processor, then use writemsg to send the data. You do not need to enter
the if-test code shown.

if cc.rtdx.iswritable('ichan'), % Used in a script application.

disp('writing to processor...') % Optional to display progress.

indata=1:10

cc.rtdx.writemsg('ichan', int16(indata))

end % Used in scripts for channel testing.

The if statement simulates writing the data from within a MATLAB
software script. The script uses iswritable to check that the input channel
is functioning. If iswritable returns 0 the script would skip the write and
exit the program, or respond in some way. When you are writing or reading
data to your processor in a script or MATLAB file, checking the status of
the channels can help you avoid errors during execution.

As your application runs you may find it helpful to display progress
messages. In this case, the program directed MATLAB software to print a
message as it reads the data from the processor by adding the function

disp('writing to processor...')

Function cc.rtdx.writemsg('ichan', int16(indata)) results in 20
messages stored on the processor. Here’s how.

2-32

Getting Started with RTDX™

When you write indata to the processor, the following code running on the
processor takes your input data from ichan, adds one to the values and
copies the data to memory:

while (!RTDX_isInputEnabled(&ichan))

{/* wait for channel enable from MATLAB */}
RTDX_read(&ichan, recvd, sizeof(recvd));
puts("\n\n Read Completed ");

for (j=1; j<=20; j++) {
for (i=0; i<MAX; i++) {

recvd[i] +=1;
}
while (!RTDX_isOutputEnabled(&ochan))

{ /* wait for channel enable from MATLAB */ }
RTDX_write(&ochan, recvd, sizeof(recvd));
while (RTDX_writing != NULL)
{ /* wait for data xfer INTERRUPT DRIVEN for C6000 */ }

}

Program int16_rtdx.c contains this source code. You can find the file in a
folder in the ..\tidemos\rtdxtutorial folder.

5 Type the following to check the number of available messages to read from
the processor.

num_of_msgs = cc.rtdx.msgcount('ochan');

num_of_msgs should be zero. Using this process to check the amount of
data can make your reads more reliable by letting you or your program
know how much data to expect.

6 Type the following to verify that your read channel ochan is enabled for
communications.

cc.rtdx.isenabled('ochan')

You should get back ans = 0— you have not enabled the channel yet.

7 Now enable and verify ’ochan’.

2-33

2 Automation Interface

cc.rtdx.enable('ochan');
cc.rtdx.isenabled('ochan')

To show that ochan is ready, MATLAB software responds ans = 1. If not,
try enabling ochan again.

8 Type

pause(5);

The pause function gives the processor extra time to process the data in
indata and transfer the data to the buffer you configured for ochan.

9 Repeat the check for the number of messages in the queue. There should be
20 messages available in the buffer.

num_of_msgs = cc.rtdx.msgcount('ochan')

With num_of_msgs = 20, you could use a looping structure to read the
messages from the queue in to MATLAB software. In the next few steps of
this tutorial you read data from the ochan queue to different data formats
within MATLAB software.

10 Read one message from the queue into variable outdata.

outdata = cc.rtdx.readmsg('ochan','int16')

outdata =

2 3 4 5 6 7 8 9 10 11

Notice the ’int16’ represent option. When you read data from your
processor you need to tell MATLAB software the data type you are reading.
You wrote the data in step 4 as 16-bit integers so you use the same data
type here.

While performing reads and writes, your process continues to run. You
did not need to stop the processor to get the data or send the data, unlike
using most debuggers and breakpoints in your code. You placed your data
in memory across an RTDX channel, the processor used the data, and you
read the data from memory across an RTDX channel, without stopping
the processor.

2-34

Getting Started with RTDX™

11 You can read data into cell arrays, rather than into simple double-precision
variables. Use the following function to read three messages to cell array
outdata, an array of three, 1-by-10 vectors. Each message is a 1-by-10
vector stored on the processor.

outdata = cc.rtdx.readmsg('ochan','int16',3)

outdata =
[1x10 int16] [1x10 int16] [1x10 int16]

12 Cell array outdata contains three messages. Look at the second message,
or matrix, in outdata by using dereferencing with the array.

outdata{1,2}

outdata =

4 5 6 7 8 9 10 11 12 13

13 Read two messages from the processor into two 2-by-5 matrices in your
MATLAB workspace.

outdata = cc.rtdx.readmsg('ochan','int16',[2 5],2)

outdata =

[2x5 int16] [2x5 int16]

To specify the number of messages to read and the data format in your
workspace, you used the siz and nummsgs options set to [2 5] and 2.

14 You can look at both matrices in outdata by dereferencing the cell array
again.

outdata{1,:}

ans =

6 8 10 12 14

7 9 11 13 15

ans =

7 9 11 13 15

8 10 12 14 16

2-35

2 Automation Interface

15 For a change, read a message from the queue into a column vector.

outdata = cc.rtdx.readmsg('ochan','int16',[10 1])

outdata =

8

9

10

11

12

13

14

15

16

17

16 Embedded IDE Link provides a function for reading messages into
matrices–readmat. Use readmat to read a message into a 5-by-2 matrix in
MATLAB software.

outdata = readmat(cc.rtdx,'ochan','int16',[5 2])

outdata =

9 14

10 15

11 16

12 17

13 18

Because a 5-by-2 matrix requires ten elements, MATLAB software reads
one message into outdata to fill the matrix.

17 To check your progress, see how many messages remain in the queue. You
have read eight messages from the queue so 12 should remain.

num_of_msgs = cc.rtdx.msgcount('ochan')

num_of_msgs =
12

2-36

Getting Started with RTDX™

18 To demonstrate the connection between messages and a matrix in MATLAB
software, read data from 'ochan' to fill a 4-by-5 matrix in your workspace.

outdata = cc.rtdx.readmat('ochan','int16',[4 5])

outdata =

10 14 18 13 17

11 15 19 14 18

12 16 11 15 19

13 17 12 16 20

Filling the matrix required two messages worth of data.

19 To verify that the last step used two messages, recheck the message count.
You should find 10 messages waiting in the queue.

num_of_msgs = cc.rtdx.msgcount('ochan')

20 Continuing with matrix reads, fill a 10-by-5 matrix (50 matrix elements or
five messages).

outdata = cc.rtdx.readmat('ochan','int16',[10 5])

outdata =

12 13 14 15 16

13 14 15 16 17

14 15 16 17 18

15 16 14 18 19

16 17 18 19 20

17 18 19 20 21

18 19 20 21 22

19 20 21 22 23

20 21 22 23 24

21 22 23 24 25

21 Recheck the number of messages in the queue to see that five remain.

22 flush lets you remove messages from the queue without reading them. Data
in the message you remove is lost. Use flush to remove the next message in
the read queue. Then check the waiting message count.

2-37

2 Automation Interface

cc.rtdx.flush('ochan',1)
num_of_msgs = cc.rtdx.msgcount('ochan')

num_of_msgs =

4

23 Empty the remaining messages from the queue and verify that the queue is
empty.

cc.rtdx.flush('ochan','all')

With the all option, flush discards all messages in the ochan queue.

Closing the Connections and Channels or Cleaning Up
One of the most important programmatic processes you should do in every
RTDX session is to clean up at the end. Cleaning up includes stopping
your processor, disabling the RTDX channels you enabled, disabling RTDX
and closing your open channels. Performing this series of tasks ensures
that future processes avoid trouble caused by unexpected interactions with
remaining handles, channels, and links from earlier development work.

Best practices suggest that you include the following tasks (or an appropriate
subset that meets your development needs) in your development scripts and
programs.

We use several functions in this section; each has a purpose — the operational
details in the following list explain how and why we use each one. They are

• close — close the specified RTDX channel. To use the channel again,
you must open and enable the channel. Compare close to disable.
close('rtdx') closes the communications provided by RTDX. After you
close RTDX, you cannot communicate with your processor.

• disable— remove RTDX communications from the specified channel, but
does not remove the channel, or link. Disabling channels may be useful
when you do not want to see the data that is being fed to the channel, but
you may want to read the channel later. By enabling the channel later, you
have access to the data entering the channel buffer. Note that data that
entered the channel while it was disabled is lost.

2-38

Getting Started with RTDX™

• halt — stop a running processor. You may still have one or more messages
in the host buffer.

Use the following procedure to shut down communications between MATLAB
software and the processor, and end your session:

1 Begin the process of shutting down the processor and RTDX by stopping
the processor. Type the following functions at the prompt.

if (isrunning(cc)) % Use this test in scripts.
cc.halt; % Halt the processor.

end % Done.

Your processor may already be stopped at this point. In a script, you might
put the function in an if-statement as we have done here. Consider this
test to be a safety check. No harm comes to the processor if it is already
stopped when you tell it to stop. When you direct a stopped processor to
halt, the function returns immediately.

2 You have stopped the processor. Now disable the RTDX channels you
opened to communicate with the processor.

cc.rtdx.disable('all');

If necessary, using disable with channel name and processor identifier
input arguments lets you disable only the channel you choose. When you
have more than one board or processor, you may find disabling selected
channels meets your needs.

When you finish your RTDX communications session, disable RTDX to
ensure that Embedded IDE Link releases your open channels before you
close them.

cc.rtdx.disable;

3 Use one or all of the following function syntaxes to close your open
channels. Either close selected channels by using the channel name in the
function, or use the all option to close all open channels.

• cc.rtdx.close('ichan') to close your input channel in this tutorial.

• cc.rtdx.close('ochan') to close your output channel in the tutorial.

2-39

2 Automation Interface

• cc.rtdx.close('all') to close all of your open RTDX channels,
regardless of whether they are part of this tutorial.

Consider using the all option with the close function when you finish
your RTDX work. Closing channels reduces unforeseen problems caused
by channel objects that exist but do not get closed correctly when you end
your session.

4 When you created your RTDX object (cc = ticcs('boardnum',1) at the
beginning of this tutorial, the ticcs function opened CCS IDE and set the
visibility to 0. To avoid problems that occur when you close the interface to
RTDX with CCS visibility set to 0, make CCS IDE visible on your desktop.
The following if statement checks the CCS IDE visibility and changes
it if needed.

if cc.isvisible,

cc.visible(1);

end

Visibility can cause problems. When CCS IDE is running invisibly on your
desktop, do not use clear all to remove your links for CCS IDE and
RTDX. Without a ticcs object that references the CCS IDE you cannot
access CCS IDE to change the visibility setting, or close the application. To
close CCS IDE when you do not have an existing object, either create a new
object to access the CCS IDE, or use Microsoft Windows Task Manager to
end the process cc_app.exe, or close the MATLAB software.

5 You have finished the work in this tutorial. Enter the following commands
to close your remaining references to CCS IDE and release the associated
resources.

clear ('all'); % Calls the link destructors to remove all links.

echo off

clear all without the parentheses removes all variables from your
MATLAB workspace.

You have completed the tutorial using RTDX. During the tutorial you

1 Opened connections to CCS IDE and RTDX and used those connections to
load an executable program to your processor.

2-40

Getting Started with RTDX™

2 Configured a pair of channels so you could transfer data to and from your
processor.

3 Ran the executable on the processor, sending data to the processor for
processing and retrieving the results.

4 Stopped the executing program and closed the links to CCS IDE and RTDX.

This tutorial provides a working process for using Embedded IDE Link and
your signal processing programs to develop programs for a range of Texas
Instruments processors. While the processor may change, the essentials of
the process remain the same.

Listing Functions
To review a complete list of functions and methods that operate with ticcs
objects, either CCS IDE or RTDX, enter either of the following commands at
the prompt.

help ticcs
help rtdx

If you already have a ticcs object cc, you can use dot notation to return the
methods for CCS IDE or RTDX by entering one of the following commands at
the prompt:

• cc.methods

• cc.rtdx.methods

In either instance MATLAB software returns a list of the available functions
for the specified link type, including both public and private functions. For
example, to see the functions (methods) for links to CCS IDE, enter:

help ticcs

2-41

2 Automation Interface

Constructing ticcs Objects
When you create a connection to CCS IDE using the ticcs command, you are
creating a “ticcs object for accessing the CCS IDE and RTDX interface”. The
ticcs object implementation relies on MATLAB software object-oriented
programming capabilities.

The discussions in this section apply to the ticcs objects in Embedded IDE
Link.

Like other MATLAB software structures, objects in Embedded IDE Link have
predefined fields called object properties.

You specify object property values by one of the following methods:

• Setting the property values when you create the ticcs object

• Creating an object with default property values, and changing some or all
of these property values later

For examples of setting ticcs object properties, refer to ticcs.

Example — Constructor for ticcs Objects
The easiest way to create an object is to use the function ticcs to create
an object with the default properties. Create an object named cc to refer to
CCS IDE by entering

cc = ticcs

MATLAB software responds with a list of the properties of the object cc you
created along with the associated default property values.

ticcs object:
API version : 1.0
Processor type : C67
Processor name : CPU
Running? : No
Board number : 0
Processor number : 0
Default timeout : 10.00 secs

2-42

Constructing ticcs Objects

RTDX channels : 0

Inspecting the output reveals two objects listed—a CCS IDE object and an
RTDX object. CCS IDE and RTDX objects cannot be created separately. By
design they maintain a member class relationship; the RTDX object is a class,
a member of the CCS object class. In this example, cc is an instance of the
class CCS. If you enter

rx = cc.rtdx

rx is a handle to the RTDX portion of the CCS object. As an alias, rx replaces
cc.rtdx in functions such as readmat or writemsg that use the RTDX
communications features of the CCS link. Typing rx at the command line
now produces

rx

RTDX channels : 0

The object properties are described in “Function Reference”, and in more
detail in ticcs Object Properties. These properties are set to default values
when you construct objects.

2-43

2 Automation Interface

ticcs Properties and Property Values
Objects in Embedded IDE Link software have properties associated with
them. Each property is assigned a value. You can set the values of most
properties, either when you create the link or by changing the property
value later. However, some properties have read-only values. And a few
property values, such as the board number and the processor to which the link
attaches, become read-only after you create the object. You cannot change
those after you create your link.

For more information about using objects and properties, refer to “Using
Objects” in MATLAB Programming Fundamentals.

2-44

Overloaded Functions for ticcs Objects

Overloaded Functions for ticcs Objects
Several functions in this Embedded IDE Link have the same name as
functions in other MathWorks toolboxes or in MATLAB software. These
behave similarly to their original counterparts, but you apply these functions
directly to an object. This concept of having functions with the same name
operate on different types of objects (or on data) is called overloading of
functions.

For example, the set command is overloaded for ticcs objects. After you
specify your link by assigning values to its properties, you can apply the
functions in this toolbox (such as readmat for using RTDX to read an array
of data from the processor) directly to the variable name you assign to your
object, without specifying your object parameters again.

For a complete list of the functions that act on ticcs objects, refer to the
“Function Reference”.

2-45

2 Automation Interface

ticcs Object Properties

In this section...

“Quick Reference to ticcs Object Properties” on page 2-46

“Details About ticcs Object Properties” on page 2-48

Embedded IDE Link provides an interface to your processor hardware so
you can communicate with processors for which you are developing systems
and algorithms. Each ticcs object comprises two objects—a CCS IDE object
and an RTDX interface object. The objects are not separable; the RTDX
object is a subclass of the CCS IDE object. Each of the objects has multiple
properties. To configure the interface objects for CCS IDE and RTDX, you set
parameters that define details such as the desired board, the processor, the
timeout period applied for communications operations, and a number of other
values. Because Embedded IDE Link uses objects to create the interface, the
parameters you set are called properties and you treat them as properties
when you set them, retrieve them, or modify them.

This section details the properties for the ticcs objects for CCS IDE and
RTDX. First the section provides tables of the properties, for quick reference.
Following the tables, the section offers in-depth descriptions of each property,
its name and use, and whether you can set and get the property value
associated with the property. Descriptions include a few examples of the
property in use.

MATLAB software users may find much of this handling of objects familiar.
Objects in Embedded IDE Link, behave like objects in MATLAB software
and the other object-oriented toolboxes. For C++ programmers, discussion of
object-oriented programming is likely to be a review.

Quick Reference to ticcs Object Properties
The following table lists the properties for the ticcs objects in Embedded
IDE Link. The second column tells you which object the property belongs to.
Knowing which property belongs to each object in a ticcs object tells you
how to access the property.

2-46

ticcs Object Properties

Property
Name

Applies
to Which
Connection?

User
Settable? Description

apiversion CCS IDE No Reports the version
number of your CCS
API.

boardnum CCS IDE Yes/initially Specifies the index number
of a board that CCS IDE
recognizes.

ccsappexe CCS IDE No Specifies the path to the
CCS IDE executable.
Read-only property.

numchannels RTDX No Contains the number of
open RTDX channels for a
specific link.

page CCS IDE Yes/default Stores the default memory
page for reads and writes.

procnum CCS IDE Yes/at start
only

Stores the number CCS
Setup Utility assigns to the
processor.

rtdx RTDX No Specifies RTDX in a
syntax.

rtdxchannel RTDX No A string. Identifies the
RTDX channel for a link.

timeout CCS IDE Yes/default Contains the global
timeout setting for the
link.

version RTDX No Reports the version of your
RTDX software.

Some properties are read only — you cannot set the property value. Other
properties you can change at all times. If the entry in the User Settable
column is “Yes/initially”, you can set the property value only when you create
the link. Thereafter it is read only.

2-47

2 Automation Interface

Details About ticcs Object Properties
To use the links for CCS IDE and RTDX interface you set values for:

• boardnum— specify the board with which the link communicates.

• procnum — specify the processor on the board. If the board has multiple
processors, procnum identifies the processor to use.

• timeout— specify the global timeout value. (Optional. Default is 10s.)

Details of the properties associated with connections to CCS IDE and RTDX
interface appear in the following sections, listed in alphabetical order by
property name.

Many of these properties are object linking and embedding (OLE) handles.
The MATLAB software COM server creates the handles when you create
objects for CCS IDE and RTDX. You can manipulate the OLE handles using
get, set, and invoke to work directly with the COM interface with which
the handles interact.

apiversion
Property appversion contains a string that reports the version of the
application program interface (API) for CCS IDE that you are using when you
create a link. You cannot change this string. When you upgrade the API, or
CCS IDE, the string changes to match. Use display to see the apiversion
property value for a link. This example shows the appversion value for
link cc.

display(cc)

TICCS Object:
API version : 1.0
Processor type : C67
Processor name : CPU
Running? : No
Board number : 0
Processor number : 0
Default timeout : 10.00 secs

RTDX channels : 0

2-48

ticcs Object Properties

Note that the API version is not the same as the CCS IDE version.

boardnum
Property boardnum identifies the board referenced by a link for CCS IDE.
When you create a link, you use boardnum to specify the board you are using.
To get the value for boardnum, use ccsboardinfo or the CCS Setup utility from
Texas Instruments software. The CCS Setup utility assigns the number for
each board installed on your system.

ccsappexe
Property ccsappexe contains the path to the CCS IDE executable file
cc_app.exe. When you use ticcs to create a link, MATLAB software
determines the path to the CCS IDE executable and stores the path in this
property. This is a read-only property. You cannot set it.

numchannels
Property numchannels reports the number of open RTDX communications
channels for an RTDX link. Each time you open a channel for a link,
numchannels increments by one. For new links numchannels is zero until you
open a channel for the link.

To see the value for numchannels create a link to CCS IDE. Then open a
channel to RTDX. Use display to see the RTDX link properties.

cc=ticcs

TICCS Object:
API version : 1.0
Processor type : C67
Processor name : CPU
Running? : No
Board number : 0
Processor number : 0
Default timeout : 10.00 secs

RTDX channels : 0

2-49

2 Automation Interface

rx=cc.rtdx

RTDX channels : 0

open(rx,'ichan','r','ochan','w');

get(cc.rtdx)

ans =

numChannels: 2
Rtdx: [1x1 COM]

RtdxChannel: {'' '' ''}
procType: 103
timeout: 10

page
Property page contains the default value CCS IDE uses when the user does
not specify the page input argument in the syntax for a function that access
memory.

procnum
Property procnum identifies the processor referenced by a link for CCS IDE.
When you create an object, you use procnum to specify the processor you are
using . The CCS Setup Utility assigns a number to each processor installed
on each board. To determine the value of procnum for a processor, use
ccsboardinfo or the CCS Setup utility from Texas Instruments software.

To identify a processor, you need both the boardnum and procnum values.
For boards with one processor, procnum equals zero. CCS IDE numbers the
processors on multiprocessor boards sequentially from 0 to the number of
processors. For example, on a board with four processors, the processors
are numbered 0, 1, 2, and 3.

2-50

ticcs Object Properties

rtdx
Property rtdx is a subclass of the ticcs link and represents the RTDX portion
of a link for CCS IDE. As shown in the example, rtdx has properties of its own
that you can set, such as timeout, and that report various states of the link.

get(cc.rtdx)

ans =

version: 1
numChannels: 0

Rtdx: [1x1 COM]
RtdxChannel: {'' [] ''}

procType: 103
timeout: 10

In addition, you can create an alias to the rtdx portion of a link, as shown
in this code example.

rx=cc.rtdx

RTDX channels : 0

Now you can use rx with the functions in Embedded IDE Link, such as get or
set. If you have two open channels, the display looks like the following

get(rx)

ans =

numChannels: 2
Rtdx: [1x1 COM]

RtdxChannel: {2x3 cell}
procType: 98
timeout: 10

when the processor is from the C62 family.

2-51

2 Automation Interface

rtdxchannel
Property rtdxchannel, along with numchannels and proctype, is a read-only
property for the RTDX portion of a link for CCS IDE. To see the value of
this property, use get with the link. Neither set nor invoke work with
rtdxchannel.

rtdxchannel is a cell array that contains the channel name, handle, and
mode for each open channel for the link. For each open channel, rtdxchannel
contains three fields, as follows:

.rtdxchannel{i,1} Channel name of the ith-channel, i from 1 to the
number of open channels

.rtdxchannel{i,2} Handle for the ith-channel

.rtdxchannel{i,3} Mode of the ith-channel, either 'r' for read or
'w' for write

With four open channels, rtdxchannel contains four channel elements and
three fields for each channel element.

timeout
Property timeout specifies how long CCS IDE waits for any process to finish.
Two timeout periods can exist — one global, one local. You set the global
timeout when you create a link for CCS IDE. The default global timeout
value 10 s. However, when you use functions to read or write data to CCS
IDE or your processor, you can set a local timeout that overrides the global
value. If you do not set a specific timeout value in a read or write process
syntax, the global timeout value applies to the operation. Refer to the help
for the read and write functions for the syntax to set the local timeout value
for an operation.

version
Property version reports the version number of your RTDX software. When
you create a ticcs object, version contains a string that reports the version
of the RTDX application that you are using. You cannot change this string.
When you upgrade the API, or CCS IDE, the string changes to match. Use
display to see the version property value for a link. This example shows
the apiversion value for object rx.

2-52

ticcs Object Properties

get(rx) % rx is an alias for cc.rtdx.

ans =

version: 1
numChannels: 0

Rtdx: [1x1 COM]
RtdxChannel: {'' [] ''}

procType: 103
timeout: 10

2-53

2 Automation Interface

Managing Custom Data Types with the Data Type Manager
Using custom data types, called typedefs (using the C keyword typedef), is
one of the complications you encounter when you use hardware-in-the-loop
(HIL) to run a function in your project from MATLAB. Because MATLAB
does not recognize custom type definitions you use in your projects, it cannot
interpret data that you define in your project code with the typedef keyword,
or use as arguments in your function prototype (declaration).

To allow you to use functions that include custom type definitions in function
calls, Embedded IDE Link offers the Data Type Manager (DTM), a tool for
defining custom type definitions to MATLAB. Using options in the DTM,
you define one or more custom data types for a project and use them in the
project. Or you define your custom data types and save them to use in many
projects. This second feature is particularly useful when you use the same
custom data types in many projects. Rather than redefining your custom
types for each new project or function, you reload the types from an earlier
project to use them again.

As programmers, usually you use typedefs for one or more of a few reasons:

• Make your code more accessible by providing more information about the
variable(s)

• Create a Boolean data type that C does not provide

• Define structures in your programs

• Define nonstandard data types

The DTM lets you define all of these things in the MATLAB context so your
C function that uses typedefs works with your MATLAB command line
functions. For reference information about the DTM, go to datatypemanager.

Entering

datatypemanager(cc)

2-54

Managing Custom Data Types with the Data Type Manager

at the MATLAB command line opens the DTM, with the Data Type Manager
dialog box shown here:

When the DTM opens, a variety of information and options displays in the
Data Type Manager dialog box:

• Typedef name (Equivalent data type)— provides a list of default data
types. When you create a typedef, you see it added to this list.

The lowercase versions of the data types appear because MATLAB does
not recognize the initial capital versions automatically. In the data type
list the project data type with the initial capital letter is mapped to the
lowercase MATLAB data type.

• Add typedef— opens the Add Typedef dialog box so you can add one or
more typedefs to your object. Your added typedef appears on the Typedef
name (Equivalent data type) list and is added to your ticcs object. Also,

2-55

2 Automation Interface

when you pass the cc object to the DTM, and then add a typedef, the
command

cc.type

returns the list of data types in the type property of your cc object,
including the typedefs you added.

• Remove typedef— removes a selected typedef from the Typedef name
(Equivalent data type) list.

• Load session — loads a previously saved session so you can use the
typedefs you defined earlier without reentering them.

• Refresh list — updates the list in Typedefs name (Equivalent data
type). Refreshing the list ensures the contents are current. If you changed
your project data type content or loaded a new project, this updates the
type definitions in the DTM.

• Close— closes the DTM and prompts you to save the session information.
This is the only way to save your work in this dialog box. Saving the session
creates a MATLAB file you can reload into the DTM later.

Adding Custom Type Definitions to MATLAB
Every custom type definition in your project must appear on the Typedef
name (Equivalent data type) list for MATLAB to understand the data
types involved. To add entries the list, use the Add typedef option to identify
your type definition with a data type that MATLAB recognizes. When you
click Add typedef, the List of Known Data Types dialog box opens,
displaying the data types currently recognized by MATLAB. To make finding
a specific type easier, the known data types are grouped into categories:

• MATLAB types

• TI C types

• TI fixed point types

• Struct, union, enum types

• Other (e.g. pointers, typedefs)

2-56

Managing Custom Data Types with the Data Type Manager

Each custom type definition added in the DTM becomes part of the ticcs
object passed to the DTM in datatypemanager(objectname). The list of data
types in the object, both default and custom, is available by entering

objectname.type

at the command prompt.

The same list appears in the DTM on the Typedef name (Equivalent
data type)

MATLAB uses the type definitions when you run a function residing on your
processor from MATLAB.

To Add a Typedef to MATLAB
You use the DTM to add typedefs for MATLAB to recognize, such as:

• Typedefs that use a MATLAB data type in the type definition

• Typedefs that use an enumerated or union data type in the type definition

• Typedefs that use a structure in the type definition

2-57

2 Automation Interface

• Typedefs that use pointers or typedefs in the type definition

To define custom data types that use structs, enums, or unions from a project,
the project must be loaded on the processor before you add the custom type
definitions. Either load the project and .out file before you start the DTM, or
use the Load Program option in the DTM to load the .out file.

Note After a successful load process, you see the name of the file you loaded in
Loaded program. Otherwise, you get an error message that the load failed.

Only programs that you load from this dialog box appear in Program
loaded. Programs that are already loaded on your processor do not appear
there because MATLAB cannot determine what program you have loaded.

You need to know the custom definitions you used so you can add them in
the DTM. Use the options for list to verify whether you loaded a .out file
on the processor.

Create an object and load a program.

1 Create a ticcs object.

cc=ticcs;

2 Load a program on your processor. For example, the MATLAB command

load(cc,'c6711dskwdnoisf_c6000_rtwD\c6711dskwdnoisf.out');

loads the executable file from the model c6711dskwdnois.mdl on the
processor.

3 Start the DTM with the object you created.

datatypemanager(cc);

The DTM starts, showing the default data types.

2-58

Managing Custom Data Types with the Data Type Manager

2-59

2 Automation Interface

4 Click Add typedef to add your first custom data type. The List of Known
Data Types dialog box appears as shown.

Add a MATLAB type definition.

5 In Typedef, enter the name of the typedef as you defined it in your code.
For this example, use typedef1_matlab.

2-60

Managing Custom Data Types with the Data Type Manager

6 Select an appropriate MATLAB data type from the MATLAB Types in
Known Types. uint16 is the choice. Choose the data type that best
represents the data type in your code.

7 Click OK to close the dialog box and add the new type definition to the
Typedef name list.

Add an enumerated type definition.

8 Click Add Typedef.

9 From the Known Types list, select Struct, Enum, Union Types.

10 To define your type definition, give it a name in Typedef, such as
typedef_enum

2-61

2 Automation Interface

11 From the Struct, Enum, Union Types list, select the appropriate
enumerated data type to use with typedef_enum. The enum_TAG_myEnum
choice fills the enumerated type chosen.

12 Click OK to close the dialog box and add typedef_enum to your defined
types that MATLAB software recognizes.

Add a structure typedef.

13 Click Add Typedef.

14 From the Known Types list, select Struct, Enum, Union Types.

15 To define your type definition, give it a name in Typedef, such as
typedef_struct.

16 From the Struct, Enum, Union Types list, select the appropriate
enumerated data type to use with typedef_struct. This example uses
struct_TAG_mySTruct.

17 Click OK to close the dialog box and add the new data type to the list.

2-62

Managing Custom Data Types with the Data Type Manager

After you close the dialog box, the Typedef name list in the Data Type
Manager looks like this.

To check the data types in the cc object, enter

cc.type

which returns

Defined types : Void, Float, Double, Long, Int, Short, Char,

typedef1_matlab, typedef_enum, typedef struct

If your function declaration uses any of the types listed by cc.type, MATLAB
software can interpret the data correctly. For example, MATLAB software
interprets the typedef1_matlab data type as uint16.

2-63

2 Automation Interface

Clicking Close in the DTM prompts you to save your session. Saving the
session creates a MATLAB file that contains operations that create your final
list of data types, identical to the data types in the Typedef name list.

The first line of the MATLAB file is a function definition, where the name of
the function is the filename of the session you saved. In the stored MATLAB
file, you find a function that includes add and remove operations that replicate
the add and remove typedef operations you used to create the list of known
data types in the DTM. For each time you added a typedef in the DTM, the
MATLAB file contains an add command that adds the new type definition
to the type property of the cc object. When you removed a data type, you
created an equivalent clear command that removes the specified data type
from the type property of the cc object.

All the operations you performed adding and removing data types in the DTM
during the session are stored in the generated MATLAB file that you save,
including mistakes you made while creating or removing type definitions.
When you load your saved session into the DTM, you see the same error
messages you saw, during the session. Keep in mind that you have already
corrected these errors.

2-64

3

Project Generator

• “Introducing Project Generator” on page 3-2

• “Project Generation and Board Selection” on page 3-3

• “Project Generator Tutorial” on page 3-5

• “Model Reference” on page 3-14

3 Project Generator

Introducing Project Generator
Project generator provides the following features for developing project and
generating code:

• Support automated project building for Texas Instruments’ Code Composer
Studio software that lets you create projects from code generated by
Real-Time Workshop and Real-Time Workshop Embedded Coder products.
The project automatically populates CCS projects in the CCS development
environment.

• Configure code generation using model configuration parameters and
processor preferences block options

• Select from two system target files to generate code specific to your
processor

• Configure project build process

• Automatically download and run your generated projects on your processor

Note You cannot generate code for C6000 processors in big-endian mode.
Code generation supports only little-endian processor data byte order.

3-2

Project Generation and Board Selection

Project Generation and Board Selection
Project Generator uses ticcs objects to connect to the IDE. Each time you
build a model to generate a project, the build process starts by issuing the
ticcs method, as shown here:

cc=ticcs('boardnum',boardnum,'procnum',procnum)

The software attempts to connect to the board (boardnum) and processor
(procnum) associated with the Board name and Processor number
parameters in the Target Preferences block in the model.

The result of the ticcs method changes, depending on the boards you
configured in CCS. The following table describes how the software selects the
board to connect to in your board configuration.

CCS Board Configuration State Response by Software

Code Composer Studio or Embedded
IDE Link software not installed.

Returns an error message asking you
to verify that you installed both Code
Composer Studio and Embedded
IDE Link properly.

Code Composer Studio software does
not have any configured boards.

Returns an error message that the
software could not find any boards in
your configuration. Use Setup Code
Composer Studio™ to configure at
least one board.

Code Composer Studio software has
one configured board.

Attaches to the board regardless of
the name of the board supplied in
the Target Preferences block. You
see a warning message telling you
which board the software selected.

Code Composer Studio software has
one board configured that does not
match the board name in the Target
Preferences block.(*)

Returns a warning message that
the software could not find the
board specified in the block and
connected to the board listed in the
warning message. The software
connects to the first board in your
CCS configuration.

3-3

3 Project Generator

CCS Board Configuration State Response by Software

Code Composer Studio has more
than one board configured. The
board name specified in the Target
Preferences block is one of the
configured boards.

Connects to the specified board.

Code Composer Studio has more
than one board configured. The
board name specified in the Target
Preferences block is not one of the
configured boards.(*)

Returns a message asking you
to select a board from the list of
configured boards. You have two
choices:
• Select a board to use for project
generation, and click OK. Your
selection does not change the
board specified in the Target
Preferences block. The software
connects to the selected board.

• Click Abort to stop the project
build and code generation process.
The software does not connect to
the IDE or board.

(*)You may encounter the situation where you do not have the correct board
configured in CCS because of one of the following conditions:

• You changed your board configuration after you added the Target
Preferences block to a model and saved the model. When you reopen the
model, the board specified in Board name in the block is no longer in
your configuration.

• You are working with a model from a source whose board configuration is
not the same as yours. The model includes a Target Preferences block.

Use ccsboardinfo at the MATLAB prompt to verify or review your configured
boards.

3-4

Project Generator Tutorial

Project Generator Tutorial

In this section...

“Creating the Model” on page 3-6

“Adding the Target Preferences Block to Your Model” on page 3-6

“Specify Configuration Parameters for Your Model” on page 3-10

In this tutorial you will use the Embedded IDE Link software to:

• Build a model.

• Generate a project from the model.

• Build the project and run the binary on a processor.

Note The model demonstrates project generation. You cannot not build and
run the model on your processor without additional blocks.

To generate a project from a model, complete the following tasks:

1 Create a model application.

2 Add a Target Preferences block from the Embedded IDE Link library to
your model.

3 In the Target Preferences block, verify and set the block parameters for
your hardware or simulator.

4 Set the configuration parameters for your model, including

• Solver parameters such as simulation start and solver options

• Real-Time Workshop software options such as processor configuration
and processor compiler selection

5 Generate your project.

6 Review your project in CCS.

3-5

3 Project Generator

Creating the Model
To create the model for audio reverberation, follow these steps:

1 Start Simulink software.

2 Create a new model by selecting File > New > Model from the Simulink
menu bar.

3 Use Simulink blocks and Signal Processing Blockset™ blocks to create
the following model.

Look for the Integer Delay block in the Discrete library of Simulink blocks
and the Gain block in the Commonly Used Blocks library. Do not add the
Custom Board for TI CCS block at this time.

4 Save your model with a suitable name before continuing.

Adding the Target Preferences Block to Your Model
So that you can configure your model to work with TI processors, Embedded
IDE Link supplies a Target Preferences/Custom Board block for Texas
Instruments processors.

Entering idelinklib_ticcs at the MATLAB software prompt opens the block
library. This block library is included in Embedded IDE Link idelinklib
blockset in the Simulink Library browser.

3-6

Project Generator Tutorial

Adding a Target Preferences block to a model triggers a dialog box that asks
about your model configuration settings. The message tells you that the model
configuration parameters will be set to default values based on the processor
specified in the block parameters. To set the parameters automatically, click
Yes. Clicking No dismisses the dialog box and does not set the parameters.

When you click Yes, the software sets the system target file to
ccslink_grt.tlc or ccslink_ert.tlc and sets the hardware options and
product-specific parameters in the model to default values. If you open the
model Configuration Parameters, you see the Embedded IDE Link pane
option on the select tree.

Clicking No prevents the software from setting the system target file and
the product specific options. When you open the model Configuration
Parameters for your model, you do not see the Embedded IDE Link pane
option on the select tree. To enable the options, select the ccslink_ert.tlc
or ccslink_grt.tlc system target file from the System Target File list in the
Real-Time Workshop pane options.

To add the Target Preferences block to your model, follow these steps:

1 Double-click Embedded IDE Link in the Simulink Library browser to open
the idelinklib blockset.

3-7

3 Project Generator

2 Select Supported IDEs > Texas Instruments Code Composer Studio
block library.

3 Drag and drop the Custom Board for TI CCS block to your model as shown
in the following model window figure.

4 Double-click the Custom Board for TI CCS block in the model to open the
block dialog box.

3-8

Project Generator Tutorial

3-9

3 Project Generator

5 In the Block dialog box, select your processor from the Processor list.

6 Verify the CPU clock value and, if you are using a simulator, select
Simulator.

7 Verify the settings on theMemory and Sections tabs to be sure they are
correct for the processor you selected.

8 Click OK to close the Target Preferences dialog box.

You have completed the model. Now configure the model configuration
parameters to generate a project in CCS IDE from your model.

Specify Configuration Parameters for Your Model
The following sections describe how to configure the build and run parameters
for your model. Generating a project, or building and running a model on
the processor, starts with configuring model options in the Configuration
Parameters dialog box in Simulink software.

Setting Solver Parameters
After you have designed and implemented your digital signal processing model
in Simulink software, complete the following steps to set the configuration
parameters for the model:

1 Open the Configuration Parameters dialog box and set the appropriate
options on the Solver category for your model and for Embedded IDE Link.

• Set Start time to 0.0 and Stop time to inf (model runs without
stopping). If you set a stop time, your generated code does not honor the
setting. Set this to inf for completeness.

• Under Solver options, select the fixed-step and discrete settings
from the lists

• Set the Fixed step size to Auto and the Tasking Mode to Single
Tasking

3-10

Project Generator Tutorial

Note Generated code does not honor Simulink software stop time from the
simulation. Stop time is interpreted as inf. To implement a stop in generated
code, add a Stop Simulation block in your model.

When you use PIL, you can set the Solver options to any selection from
the Type and Solver lists.

Ignore the Data Import/Export, Diagnostics, and Optimization categories
in the Configuration Parameters dialog box. The default settings are correct
for your new model.

Setting Real-Time Workshop Code Generation Parameters
To configure Real-Time Workshop software to use the correct processor
files and to compile and run your model executable file, set the options in
the Real-Time Workshop category of the Select tree in the Configuration
Parameters dialog box. Follow these steps to set the code generation options
for your DSP:

1 Select Real-Time Workshop on the Select tree.

2 In Target selection, use the Browse button to set System target file
to ccslink_grt.tlc.

Setting Embedded IDE Link Parameters
To configure Real-Time Workshop software to use the correct code generation
options and to compile and run your model executable file, set the options in
the Embedded IDE Link category of the Select tree in the Configuration
Parameters dialog box. Follow these steps to set the code generation options
for your processor:

1 From the Select tree, choose Embedded IDE Link to specify code
generation options that apply to your processor.

2 Set the following options in the pane under Project options:

• Project options should be Custom.

3-11

3 Project Generator

• Set Compiler options string and Linker options string should be
blank.

3 Under Link Automation, verify that Export IDE link handle to base
workspace is selected and provide a name for the handle in IDE handle
name (optional).

4 Set the following Runtime options:

• Build action: Build_and_execute.

• Interrupt overrun notification method: None.

You have configured the Real-Time Workshop software options that let you
generate a project for you processor. You may have noticed that you did not
configure a few categories on the Select tree, such as Comments, Symbols,
and Optimization.

For your new model, the default values for the options in these categories
are correct. For other models you develop, you may want to set the options
in these categories to provide information during the build and to run TLC
debugging when you generate code. Refer to your Simulink and Real-Time
Workshop documentation for more information about setting the configuration
parameters.

Building Your Project
After you set the configuration parameters and configure Real-Time
Workshop software to create the files you need, you direct the build process
to create your project:

1 Press OK to close the Configuration Parameters dialog box.

2 Click Ctrl+B to generate your project into CCS IDE.

When you click Build with Create_project selected for Build action,
the automatic build process starts CCS IDE, populates a new project in
the development environment, builds the project, loads the binary on the
processor, and runs it.

3-12

Project Generator Tutorial

3 To stop processor execution, use the Halt option in CCS or enter cc.halt
at the MATLAB command prompt. (Where “cc” is the IDE handle name
you specified previously in Configuration Parameters.)

3-13

3 Project Generator

Model Reference
Model reference lets your model include other models as modular components.
This technique provides useful features because it:

• Simplifies working with large models by letting you build large models
from smaller ones, or even large ones.

• Lets you generate code once for all the modules in the entire model and
only regenerate code for modules that change.

• Lets you develop the modules independently.

• Lets you reuse modules and models by reference, rather than including the
model or module multiple times in your model. Also, multiple models can
refer to the same model or module.

Your Real-Time Workshop documentation provides much more information
about model reference.

How Model Reference Works
Model reference behaves differently in simulation and in code generation. For
this discussion, you need to know the following terms:

• Top model — The root model block or model. It refers to other blocks or
models. In the model hierarchy, this is the topmost model.

• Referenced models — Blocks or models that other models reference, such
as models the top model refers to. All models or blocks below the top model
in the hierarchy are reference models.

The following sections describe briefly how model reference works. More
details are available in your Real-Time Workshop documentation in the
online Help system.

Model Reference in Simulation
When you simulate the top model, Real-Time Workshop software detects
that your model contains referenced models. Simulink software generates
code for the referenced models and uses the generated code to build shared
library files for updating the model diagram and simulation. It also creates

3-14

Model Reference

an executable (a MEX file, .mex) for each reference model that is used to
simulate the top model.

When you rebuild reference models for simulations or when you run or update
a simulation, Simulink software rebuilds the model reference files. Whether
reference files or models are rebuilt depends on whether and how you change
the models and on the Rebuild options settings. You can access these
setting through theModel Reference pane of the Configuration Parameters
dialog box.

Model Reference in Code Generation
Real-Time Workshop software requires executables to generate code from
models. If you have not simulated your model at least once, Real-Time
Workshop software creates a .mex file for simulation.

Next, for each referenced model, the code generation process calls make_rtw
and builds each referenced model. This build process creates a library file for
each of the referenced models in your model.

After building all the referenced models, Real-Time Workshop software calls
make_rtw on the top model, linking to all the library files it created for the
associated referenced models.

Using Model Reference
With few limitations or restrictions, Embedded IDE Link provides full support
for generating code from models that use model reference.

Build Action Setting
The most important requirement for using model reference with the TI’s
processors is that you must set the Build action (go to Configuration
Parameters > Embedded IDE Link) for all models referred to in the
simulation to Archive_library.

To set the build action

1 Open your model.

2 Select Simulation > Configuration Parameters from the model menus.

3-15

3 Project Generator

The Configuration Parameters dialog box opens.

3 From the Select tree, choose Embedded IDE Link.

4 In the right pane, under Runtime, select set Archive_library from the
Build action list.

If your top model uses a reference model that does not have the build action
set to Archive_library, the build process automatically changes the build
action to Archive_library and issues a warning about the change.

As a result of selecting the Archive_library setting, other options are
disabled:

• DSP/BIOS is disabled for all referenced models. Only the top model
supports DSP/BIOS operation.

• Interrupt overrun notification method, Export IDE link handle
to the base workspace, and System stack size are disabled for the
referenced models.

Target Preferences Blocks in Reference Models
Each referenced model and the top model must include a Target Preferences
block for the correct processor. You must configure all the Target Preferences
blocks for the same processor.

To obtain information about which compiler to use and which archiver to
use to build the referenced models, the referenced models require Target
Preferences blocks. Without them, the compile and archive processes does
not work.

By design, model reference does not allow information to pass from the top
model to the referenced models. Referenced models must contain all the
necessary information, which the Target Preferences block in the model
provides.

Other Block Limitations
Model reference with Embedded IDE Link does not allow you to use certain
blocks or S-functions in reference models:

3-16

Model Reference

• No blocks from the C62x DSP Library (in c6000lib) (because these are
noninlined S-functions)

• No blocks from the C64x DSP Library (in c6000lib) (because these are
noninlined S-functions)

• No noninlined S-functions

• No driver blocks, such as the ADC or DAC blocks from any Target Support
Package™ or Target Support Package block library

Configuring processors to Use Model Reference
processors that you plan to use in Model Referencing must meet some general
requirements.

• A model reference compatible processor must be derived from the ERT or
GRT processors.

• When you generate code from a model that references another model, you
need to configure both the top-level model and the referenced models for
the same code generation processor.

• The External mode option is not supported in model reference Real-Time
Workshop software processor builds. Embedded IDE Link does not
support External mode. If you select this option, it is ignored during code
generation.

• To support model reference builds, your TMF must support use of the
shared utilities directory, as described in Supporting Shared Utility
Directories in the Build Process in the Real-Time Workshop documentation.

To use an existing processor, or a new processor, with Model Reference, you
set the ModelReferenceCompliant flag for the processor. For information
on how to set this option, refer to ModelReferenceCompliant in the online
Help system.

If you start with a model that was created prior to version 2.4 (R14SP3), to
make your model compatible with the model reference processor, use the
following command to set the ModelReferenceCompliant flag to On:

set_param(bdroot,'ModelReferenceCompliant','on')

3-17

3 Project Generator

Models that you develop with versions 2.4 and later of Embedded IDE Link
automatically include the model reference capability. You do not need to
set the flag.

3-18

4

Exporting Filter
Coefficients from FDATool

• “About FDATool” on page 4-2

• “Preparing to Export Filter Coefficients to Code Composer Studio Projects”
on page 4-4

• “Exporting Filter Coefficients to Your Code Composer Studio Project” on
page 4-9

• “Preventing Memory Corruption When You Export Coefficients to Processor
Memory” on page 4-15

4 Exporting Filter Coefficients from FDATool

About FDATool
Signal Processing Toolbox™ software provides the Filter Design and Analysis
tool (FDATool) that lets you design a filter and then export the filter
coefficients to a matching filter implemented in a CCS project.

Using FDATool with CCS IDE enables you to:

• Design your filter in FDATool

• Use CCS to test your filter on a processor

• Redesign and optimize the filter in FDATool

• Test your redesigned filter on the processor

For instructions on using FDATool, refer to the section “Filter Design and
Analysis Tool” in the Signal Processing Toolbox documentation.

Procedures in this chapter demonstrate how to use the FDATool export
options to export filter coefficients to CCS. Using these procedures, you can
perform the following tasks:

• Export filter coefficients from FDATool in a header file—“Exporting Filter
Coefficients from FDATool to the CCS IDE Editor” on page 4-9

• Export filter coefficients from FDATool to processor memory—“Replacing
Existing Coefficients in Memory with Updated Coefficients” on page 4-16

Caution As a best practice, export coefficients in a header file for the most
reliable results. Exporting coefficients directly to processor memory can
generate unexpected results or corrupt memory.

Also see the reference pages for the following Embedded IDE Link functions.
These primary functions allow you use to access variables and write them to
processor memory from the MATLAB Command window.

• — Return the address of a symbol so you can read or write to it.

4-2

About FDATool

• ticcs — Create a connection between MATLAB software and CCS IDE so
you can work with the project in CCS from the MATLAB Command window.

• write — Write data to memory on the processor.

4-3

4 Exporting Filter Coefficients from FDATool

Preparing to Export Filter Coefficients to Code Composer
Studio Projects

In this section...

“Features of a Filter” on page 4-4

“Selecting the Export Mode” on page 4-5

“Choosing the Export Data Type” on page 4-6

Features of a Filter
When you create a filter in FDATool, the filter includes defining features
identified in the following table.

Defining
Feature

Description

Structure Structure defines how the elements of a digital
filter—gains, adders/subtractors, and delays—combine
to form the filter. See the Signal Processing Toolbox
documentation in the Online Help system for more
information about filter structures.

Design Method Defines the mathematical algorithm used to determine
the filter response, length, and coefficients.

Response
Type and
Specifications

Defines the filter passband shape, such as lowpass or
bandpass, and the specifications for the passband.

Coefficients Defines how the filter structure responds at each stage
of the filter process.

Data Type Defines how to represent the filter coefficients and
the resulting filtered output. Whether your filter uses
floating-point or fixed-point coefficients affects the filter
response and output data values.

When you export your filter, FDATool exports only the number of and value of
the filter coefficients and the data type used to define the coefficients.

4-4

Preparing to Export Filter Coefficients to Code Composer Studio™ Projects

Selecting the Export Mode
You can export a filter by generating an ANSI® C header file, or by writing
the filter coefficients directly to processor memory. The following table
summarizes when and how to use the export modes.

To…
Use Export
Mode… When to Use Suggested Use

Add filter
coefficients
to a project in
CCS

C header
file

You implemented a
filter algorithm in your
program, but you did
not allocate memory on
your processor for the
filter coefficients.

• Add the generated ANSI C header file
to an appropriate project. Building
and loading this project into your
processor allocates static memory
locations on the processor and writes
your filter coefficients to those
locations.

• Edit the file so the header file allocates
extra processor memory and then add
the header file to your project. Refer
to “Allocating Sufficient or Extra
Memory for Filter Coefficients” on
page 4-15 in the next section.

(For a sample generated header file,
refer to“Reviewing ANSI C Header File
Contents” on page 4-12.)

Modify
the filter
coefficients in
an embedded
application
loaded on a
processor

Write
directly
to memory

You loaded a program
on your processor.
The program allocated
space in your processor
memory to store the
filter coefficients.

• Optimize your filter design in
FDATool.

Then,

• Write the updated filter coefficients
directly to the allocated processor
memory. Refer to section “Preventing
Memory Corruption When You Export
Coefficients to Processor Memory” on
page 4-15 for more information.

4-5

4 Exporting Filter Coefficients from FDATool

Choosing the Export Data Type
The export process provides two ways you can specify the data type to use
to represent the filter coefficients. Select one of the options shown in the
following table when you export your filter.

Specify Data Type for
Export

Description

Export suggested Uses the data type that FDATool suggests to
preserve the fidelity of the filter coefficients
and the performance of your filter in the
project

Export as Lets you specify the data type to use to
export the filter coefficients

FDATool exports filter coefficients that use the following data types directly
without modifications:

• Signed integer (8, 16, or 32 bits)

• Unsigned integer (8, 16, or 32 bits)

• Double-precision floating point (64 bits)

• Single-precision floating point (32 bits)

Filters in FDATool in the Signal Processing Toolbox software use
double-precision floating point. You cannot change the data type.

If you have installed Filter Design Toolbox™ software, you can use the
filter quantization options in FDATool to set the word and fraction lengths
that represent your filter coefficients. For information about using the
quantization options, refer to Filter Design and Analysis Tool in the Filter
Design Toolbox documentation in the Online help system.

If your filter uses one of the supported data types, Export suggested
specifies that data type.

If your filter does not use one of the supported data types, FDATool converts
the unsupported data type to one of the supported types and then suggests
that data type. For more information about how FDATool determines the data

4-6

Preparing to Export Filter Coefficients to Code Composer Studio™ Projects

type to suggest, refer to “How FDATool Determines the Export Suggested
Data Type” on page 4-7.

Follow these best-practice guidelines when you implement your filter
algorithm in source code and design your filter in FDATool:

• Implement your filter using one of the data types FDATool exports without
modifications.

• Design your filter in FDATool using the data type you used to implement
your filter.

To Choose the Export Data Type
When you export your filter, follow this procedure to select the export data
type to ensure the exported filter coefficients closely match the coefficients of
your filter in FDATool.

1 In FDATool, select Targets > Code Composer Studio IDE to open the
Export to Code Composer Studio IDE dialog box.

2 Perform one of the following actions:

• Select Export suggested to export the coefficients in the suggested
data type.

• Select Export as and choose the data type your filter requires from
the list.

Caution If you select Export as, the exported filter coefficients can
be very different from the filter coefficients in FDATool. As a result,
your filter cutoff frequencies and performance may not match your
design in FDATool.

How FDATool Determines the Export Suggested Data Type
By default, FDATool represents filter coefficients as double-precision
floating-point data. When you export your filter coefficients, FDATool
suggests the same data type.

4-7

4 Exporting Filter Coefficients from FDATool

If you set custom word and fraction lengths to represent your filter
coefficients, the export process suggests a data type to maintain the best
fidelity for the filter.

The export process converts your custom word and fraction lengths to a
suggested export data type, using the following rules:

• Round the word length up to the nearest larger supported data type. For
example, round an 18-bit word length up to 32 bits.

• Set the fraction length to the maintain the same difference between the
word and fraction length in the new data type as applies in the custom
data type.

For example, if you specify a fixed-point data type with word length of
14 bits and fraction length of 11 bits, the export process suggests an
integer data type with word length of 16 bits and fraction length of 13
bits, retaining the 3 bit difference.

4-8

Exporting Filter Coefficients to Your Code Composer Studio Project

Exporting Filter Coefficients to Your Code Composer Studio
Project

In this section...

“Exporting Filter Coefficients from FDATool to the CCS IDE Editor” on
page 4-9

“Reviewing ANSI C Header File Contents” on page 4-12

Exporting Filter Coefficients from FDATool to the CCS
IDE Editor
In this section, you export filter coefficients to a project by generating an
ANSI C header file that contains the coefficients. The header file defines
global arrays for the filter coefficients. When you compile and link the project
to which you added the header file, the linker allocates the global arrays in
static memory locations in processor memory.

Loading the executable file into your processor allocates enough memory
to store the exported filter coefficients in processor memory and writes the
coefficients to the allocated memory.

Use the following steps to export filter coefficients from FDATool to the CCS
IDE text editor.

1 Start FDATool by entering fdatool at the MATLAB command prompt.

fdatool % Starts FDATool.

2 Design a filter with the same structure, length, design method,
specifications, and data type you implemented in your source code filter
algorithm.

The following figure shows a Direct-form II IIR filter example that uses
second-order sections.

3 Click Store Filter to store your filter design. Storing the filter allows
you to recall the design to modify it.

4-9

4 Exporting Filter Coefficients from FDATool

4 To export the filter coefficients, select Targets > Code Composer Studio
IDE from the FDATool menu bar.

The Export to Code Composer Studio IDE dialog box opens, as shown in
the following figure.

5 Set Export mode to C header file.

6 In Variable names in C header file, enter variable names for the
Numerator, Denominator, Numerator length, and Denominator
length parameters where the coefficients will be stored.

The dialog box shows only the variables you need to export to define your
filter.

4-10

Exporting Filter Coefficients to Your Code Composer Studio Project

Note You cannot use reserved ANSI C programming keywords, such as
if or int as variable names, or include invalid characters such as spaces
or semicolons (;).

7 In Data type to use in export, select Export suggested to accept the
recommended export data type. FDATool suggests a data type that retains
filter coefficient fidelity.

You may find it useful to select the Export as option and select an export
data type other than the one suggested.

Caution If you deviate from the suggested data type, the exported filter
coefficients can be very different from the filter coefficients in FDATool. As
a result, your filter cutoff frequencies and performance may not match your
design in FDATool.

For more information about how FDATool decides which data type to
suggest, refer to “How FDATool Determines the Export Suggested Data
Type” on page 4-7.

8 If you know the board number and processor number of your DSP, enter
DSP Board # and DSP Processor # values to identify your board.

When you have only one board or simulator, Embedded IDE Link
software sets DSP Board # and DSP Processor # values for your board
automatically.

If you have more than one board defined in CCS Setup:

4-11

4 Exporting Filter Coefficients from FDATool

• Click Select target to open the Selection Utility: Embedded IDE Link
dialog box.

• From the list of boards and list of processors, select the board name
and processor name to use.

• Click Done to set the DSP Board # and DSP Processor # values.

9 Click Generate to generate the ANSI header file. FDATool prompts you
for a file name and location to save the generated header file.

The default location to save the file is your MATLAB working folder. The
default file name is fdacoefs.h.

10 Click OK to export the header file to the CCS editor.

If CCS IDE is not open, this step starts the IDE.

The export process does not add the file to your active project in the IDE.

11 Drag your generated header file into the project that implements the filter.

12 Add a #include statement to your project source code to include the new
header file when you build your project.

13 Generate a .out file and load the file into your processor. Loading the file
allocates locations in static memory on the processor and writes the filter
coefficients to those locations.

To see an example header file, refer to “Reviewing ANSI C Header File
Contents” on page 4-12.

Reviewing ANSI C Header File Contents
The following program listing shows the exported header (.h) file that
FDATool generates. This example shows a direct-form II filter that uses five
second-order sections. The filter is stable and has linear phase.

Comments in the file describe the filter structure, number of sections,
stability, and the phase of the filter. Source code shows the filter coefficients
and variables associated with the filter design, such as the numerator length
and the data type used to represent the coefficients.

4-12

Exporting Filter Coefficients to Your Code Composer Studio Project

/*

* Filter Coefficients (C Source) generated by the Filter Design and Analysis Tool

*

* Generated by MATLAB(R) 7.8 and the Signal Processing Toolbox 6.11.

*

* Generated on: xx-xxx-xxxx 14:24:45

*

*/

/*

* Discrete-Time IIR Filter (real)

* -------------------------------

* Filter Structure : Direct-Form II, Second-Order Sections

* Number of Sections : 5

* Stable : Yes

* Linear Phase : No

*/

/* General type conversion for MATLAB generated C-code */

#include "tmwtypes.h"

/*

* Expected path to tmwtypes.h

* $MATLABROOT\extern\include\tmwtypes.h

*/

#define MWSPT_NSEC 11

const int NL[MWSPT_NSEC] = { 1,3,1,3,1,3,1,3,1,3,1 };

const real64_T NUM[MWSPT_NSEC][3] = {

{

0.802536131462, 0, 0

},

{

0.2642710234701, 0.5285420469403, 0.2642710234701

},

{

1, 0, 0

},

{

0.1743690465012, 0.3487380930024, 0.1743690465012

},

4-13

4 Exporting Filter Coefficients from FDATool

{

0.2436793028081, 0.4873586056161, 0.2436793028081

},

{

1, 0, 0

},

{

0.3768793219093, 0.7537586438185, 0.3768793219093

},

{

1, 0, 0

}

};

const int DL[MWSPT_NSEC] = { 1,3,1,3,1,3,1,3,1,3,1 };

const real64_T DEN[MWSPT_NSEC][3] = {

{

1, 0, 0

},

{

1, -0.1842138030775, 0.1775781189277

},

{

1, 0, 0

},

{

1, -0.2160098642842, 0.3808329528195

},

{

1, 0, 0

}

};

4-14

Preventing Memory Corruption When You Export Coefficients to Processor Memory

Preventing Memory Corruption When You Export
Coefficients to Processor Memory

In this section...

“Allocating Sufficient or Extra Memory for Filter Coefficients” on page 4-15

“Example: Using the Exported Header File to Allocate Extra Processor
Memory” on page 4-15

“Replacing Existing Coefficients in Memory with Updated Coefficients”
on page 4-16

“Example: Changing Filter Coefficients Stored on Your Processor” on page
4-17

Allocating Sufficient or Extra Memory for Filter
Coefficients
You can allocate extra memory by editing the generated ANSI C header file.
You can then load the associated program file into your processor as described
in “Example: Using the Exported Header File to Allocate Extra Processor
Memory” on page 4-15. Extra memory lets you change filter coefficients and
overwrite existing coefficients stored in processor memory more easily.

To prevent problems when you update filter coefficients in a project, , such as
writing coefficients to unintended memory locations, use the C header file
export mode option in FDATool to update filter coefficients in your program.

Example: Using the Exported Header File to Allocate
Extra Processor Memory
You can edit the generated header file so the linked program file allocates
extra processor memory. By allocating extra memory, you avoid the problem
of insufficient memory when you export new coefficients directly to allocated
memory.

For example, changing the following command in the header file:

const real64_T NUM[47] = {...}

4-15

4 Exporting Filter Coefficients from FDATool

to

real64_T NUM[256] = {...}

allocates enough memory for NUM to store up to 256 numerator filter
coefficients rather than 47.

Exporting the header file to CCS IDE does not add the filter to your project.
To incorporate the filter coefficients from the header file, add a #include
statement:

#include "headerfilename.h"

Refer to “Exporting Filter Coefficients to Your Code Composer Studio Project”
on page 4-9 for information about generating a header file to export filter
coefficients.

When you export filter coefficients directly to processor memory, the export
process writes coefficients to as many memory locations as they need. The
write process does not perform bounds checking. To ensure you write to the
correct locations, and have enough memory for your filter coefficients, plan
memory allocation carefully.

Replacing Existing Coefficients in Memory with
Updated Coefficients
When you redesign a filter and export new coefficients to replace existing
coefficients in memory, verify the following conditions for your new design:

• Your redesign did not increase the memory required to store the coefficients
beyond the allocated memory.

Changes that increase the memory required to store the filter coefficients
include the following redesigns:

- Increasing the filter order

- Changing the number of sections in the filter

- Changing the numerical precision (changing the export data type)

• Your changes did not change the export data type.

4-16

Preventing Memory Corruption When You Export Coefficients to Processor Memory

Caution Identify changes that require additional memory to store the
coefficients before you begin your export. Otherwise, exporting the new filter
coefficients may overwrite data in memory locations you did not allocate for
storing coefficients. Also, exporting filter coefficients to memory after you
change the filter order, structure, design algorithm, or data type can yield
unexpected results and corrupt memory.

Changing the filter design algorithm in FDATool, such as changing from
Butterworth to Maximally Flat, often changes the number of filter coefficients
(the filter order), the number of sections, or both. Also, the coefficients from
the new design algorithm may not perform properly with your source code
filter implementation.

If you change the design algorithm, verify that your filter structure and
length are the same after you redesign your filter, and that the coefficients
will perform properly with the filter you implemented.

If you change the number of sections or the filter order, your filter will not
perform properly unless your filter algorithm implementation accommodates
the changes.

Example: Changing Filter Coefficients Stored on Your
Processor
This example writes filter coefficients to processor memory to replace the
existing coefficients. To perform this process, you need the names of the
variables in which your project stores the filter data.

Before you export coefficients directly to memory, verify that your project
allocated enough memory for the new filter coefficients. If your project
allocated enough memory, you can modify your filter in FDATool and then
follow the steps in this example to export the updated filter coefficients to
the allocated memory.

If your new filter requires additional memory space, use a C header file to
allocate memory on the processor and export the new coefficients as described
in “Exporting Filter Coefficients to Your Code Composer Studio Project” on
page 4-9.

4-17

4 Exporting Filter Coefficients from FDATool

For important guidelines on writing directly to processor memory, refer to
“Preventing Memory Corruption When You Export Coefficients to Processor
Memory” on page 4-15.

Follow these steps to export filter coefficients from FDATool directly to
memory on your processor.

1 Load the program file that contains your filter into CCS IDE to activate the
program symbol table. The symbol must contain the global variables you
use to store the filter coefficients and length parameters.

2 Start FDATool.

3 Click Filter Manager to open the Filter Manager dialog box, shown in
the following figure.

4 Highlight the filter to modify on the list of filters, and select Edit current
filter. The highlighted filter appears in FDATool for you to change.

4-18

Preventing Memory Corruption When You Export Coefficients to Processor Memory

If you did not store your filter from a previous session, design the filter
in FDATool and continue.

5 Click Close to dismiss the Filter Manager dialog box.

6 Adjust the filter specifications in FDATool to modify its performance.

7 In FDATool, select Targets > Code Composer Studio IDE to open the
Export to Code Composer Studio IDE dialog box.

Keep the export dialog box open while you work. When you do so, the
contents update as you change the filter in FDATool.

Tip Click Generate to export coefficients to the same processor memory
location multiple times without reentering variable names.

8 In the Export to Code Composer Studio dialog box:

• Set Export mode to Write directly to memory

• Clear Disable memory transfer warnings to get a warning if your
processor does not support the export data type.

9 In Variable names in target symbol table, enter the names of the
variables in the processor symbol table that correspond to the memory
allocated for the parameters, such as Numerator and Denominator.
Your names must match the names of the filter coefficient variables in
your program.

10 Select Export suggested to accept the recommended export data type.

4-19

4 Exporting Filter Coefficients from FDATool

For more information about how FDATool determines the data type to
suggest, refer to “How FDATool Determines the Export Suggested Data
Type” on page 4-7.

11 If you know the board number and processor number of your DSP, enter
DSP Board # and DSP Processor # values to identify your board.

Note When you have only one board or simulator, Embedded IDE Link
sets DSP Board # and DSP Processor # to your board automatically.

If you have more than one board defined in CCS Setup:

• Click Select target to open the Selection Utility: Embedded IDE Link
dialog box.

• Select the board name and processor name to use from the list of boards.

12 Click Generate to export your filter. If your processor does not support the
data type you export, you see a warning similar to the following message.

4-20

Preventing Memory Corruption When You Export Coefficients to Processor Memory

You can continue to export the filter, or cancel the export process. To
prevent this warning dialog box from appearing, select Disable memory
transfer warnings in the Export to Code Composer Studio IDE dialog box.

13 (Optional) Continue to optimize filter performance by modifying your
filter in FDATool and then export the updated filter coefficients directly
to processor memory.

14 When you finish testing your filter, return to FDATool, and click Store
filter to save your changes.

4-21

4 Exporting Filter Coefficients from FDATool

4-22

5

Block Reference

5 Block Reference

Block Library: idelinklib_ticcs

C280x/C2802x/C2803x/C28x3x
Hardware Interrupt

Interrupt Service Routine to
handle hardware interrupt on
C280x/C28x3x processors

C281x Hardware Interrupt Interrupt Service Routine to handle
hardware interrupt

C5000/C6000 Hardware Interrupt Interrupt Service Routine to handle
hardware interrupt on C5000 and
C6000 processors

5-2

Block Library: idelinklib_common

Block Library: idelinklib_common

5-3

5 Block Reference

5-4

6

Blocks — Alphabetical List

C280x/C2802x/C2803x/C28x3x Hardware Interrupt

Purpose Interrupt Service Routine to handle hardware interrupt on
C280x/C28x3x processors

Library Embedded IDE Link for TI Code Composer Studio (idelinklib_ticcs)

Description For many systems, an execution scheduling model based on a timer
interrupt is not sufficient to ensure a real-time response to external
events. The C280x/C28x3x Hardware Interrupt block addresses this
problem by allowing asynchronous processing of interrupts triggered
by events managed by other blocks in the C280x/C28x3x DSP Chip
Support Library.

The following C280x/C28x3x blocks that can generate an interrupt for
asynchronous processing are available in Target Support Package.

• C280x ADC

• C280x eCAN Receive

• C280x SCI Receive

• C280x SCI Transmit

• C280x SPI Receive

• C280x SPI Transmit

Only one Hardware Interrupt block can be used in a model. To handle
multiple interrupts, place a Demux block at the output of the Hardware
Interrupt block to direct function calls to the appropriate function-call
subsystems.

Vectorized Output

The output of this block is a function call. The size of the function call
line equals the number of interrupts the block is set to handle. Each
interrupt is represented by four parameters shown on the dialog box of
the block. These parameters are a set of four vectors of equal length.
Each interrupt is represented by one element from each parameter (four
elements total), one from the same position in each of these vectors.

6-2

C280x/C2802x/C2803x/C28x3x Hardware Interrupt

Each interrupt is described by:

• CPU interrupt numbers

• PIE interrupt numbers

• Task priorities

• Preemption flags

So one interrupt is described by a CPU interrupt number, a PIE
interrupt number, a task priority, and a preemption flag.

The CPU and PIE interrupt numbers together uniquely specify a single
interrupt for a single peripheral or peripheral module. Locate the “PIE
MUXed Peripheral Interrupt Vector Table” in the following Texas
Instruments documents for your processor:

Processor Literature Number at ti.com

280x and 28044 SPRU712

C2833x SPRUFB0

C2802x SPRUFN3

C2803x SPRUGL8

The task priority indicates the relative importance tasks associated with
the asynchronous interrupts. If an interrupt triggers a higher-priority
task while a lower-priority task is running, the execution of the
lower-priority task will be suspended while the higher-priority task is
executed. The lowest value represents the highest priority. The default
priority value of the base rate task is 40, so the priority value for each
asynchronously triggered task must be less than 40 for these tasks to
suspend the base rate task.

The preemption flag determines whether a given interrupt is
preemptable. Preemption overrides prioritization, such that
a preemptable task of higher priority can be preempted by a
non-preemptable task of lower priority.

6-3

C280x/C2802x/C2803x/C28x3x Hardware Interrupt

Dialog
Box

CPU interrupt numbers
Enter a vector of CPU interrupt numbers for the interrupts you
want to process asynchronously.

See the table of C280x Peripheral Interrupt Vector Values for a
mapping of CPU interrupt number to interrupt names.

PIE interrupt numbers
Enter a vector of PIE interrupt numbers for the interrupts you
want to process asynchronously.

See the table of C280x Peripheral Interrupt Vector Values for a
mapping of CPU interrupt number to interrupt names.

Simulink task priorities
Enter a vector of task priorities for the interrupts you want to
process asynchronously.

6-4

C280x/C2802x/C2803x/C28x3x Hardware Interrupt

See the discussion of this block’s “Vectorized Output” on page 6-2
for an explanation of task priorities.

Preemption flags
Enter a vector of preemption flags for the interrupts you want to
process asynchronously.

See the discussion of this block’s “Vectorized Output” on page 6-2
for an explanation of preemption flags.

Enable simulation input
Select this check box if you want to be able to test asynchronous
interrupt processing in the context of your Simulink software
model.

Note Select this check box to enable you to test asynchronous
interrupt processing behavior in Simulink software.

References Detailed information about interrupt processing is in TMS320x280x
DSP System Control and Interrupts Reference Guide, Literature
Number SPRU712B, available at the Texas Instruments Web site.

See Also The following links refer to block reference pages that require the
Target Support Package software.

C280x/C2802x/C2803x/C28x3x Software Interrupt Trigger,Idle Task

6-5

C281x Hardware Interrupt

Purpose Interrupt Service Routine to handle hardware interrupt

Library Embedded IDE Link for TI Code Composer Studio (idelinklib_ticcs)

Description For many systems, an execution scheduling model based on a timer
interrupt is not sufficient to ensure a real-time response to external
events. The C281x Hardware Interrupt block addresses this problem
by allowing for the asynchronous processing of interrupts triggered
by events managed by other blocks in the C281x DSP Chip Support
Library.

The following C281x blocks that can generate an interrupt for
asynchronous processing are available fromTarget Support Package:

• C281x ADC

• C281x CAP

• C281x eCAN Receive

• C281x Timer

• C281x SCI Receive

• C281x SCI Transmit

• C281x SPI Receive

• C281x SPI Transmit

Only one Hardware Interrupt block can be used in a model. To handle
multiple interrupts, place a Demux block at the output of the Hardware
Interrupt block to direct function calls to the appropriate function-call
subsystems.

Vectorized Output

The output of this block is a function call. The size of the function call
line equals the number of interrupts the block is set to handle. Each
interrupt is represented by four parameters shown on the dialog box of
the block. These parameters are a set of four vectors of equal length.

6-6

C281x Hardware Interrupt

Each interrupt is represented by one element from each parameter (four
elements total), one from the same position in each of these vectors.

Each interrupt is described by:

• CPU interrupt numbers

• PIE interrupt numbers

• Task priorities

• Preemption flags

So one interrupt is described by a CPU interrupt number, a PIE
interrupt number, a task priority, and a preemption flag.

The CPU and PIE interrupt numbers together uniquely specify a single
interrupt for a single peripheral or peripheral module. The following
table maps CPU and PIE interrupt numbers to these peripheral
interrupts.

6-7

C281x Hardware Interrupt
C
2

8
1

x
P
er

ip
h
er

a
l
In

te
rr

u
p
t

V
ec

to
r

V
a
lu

es

R
o
w

n
u
m

b
er

s
=

C
P
U

va
lu

es
/

C
o
lu

m
n

n
u
m

b
er

s
=

P
IE

va
lu

es

8
7

6
5

4
3

2
1

1
W

A
K

E
IN

T

(L
P

M
/W

D
)

T
IN

T
0

(T
IM

E
R

0)

A
D

C
IN

T

(A
D

C
)

X
IN

T
2

X
IN

T
1

R
es

er
ve

d
P

D
P

IN
T

B

(E
V

-B
)

P
D

P
IN

TA

(E
V

-A
)

2
R

es
er

ve
d

T
1O

F
IN

T

(E
V

-A
)

T
1

U
F

IN
T

(E
V

-A
)

T
1C

IN
T

(E
V

-A
)

T
1P

IN
T

(E
V

-A
)

C
M

P
3I

N
T

(E
V

-A
)

C
M

P
2I

N
T

(E
V

-A
)

C
M

P
1

IN
T

(E
V

-A
)

3
R

es
er

ve
d

C
A

P
IN

T
3

(E
V

-A
)

C
A

P
IN

T
2

(E
V

-A
)

C
A

P
IN

T
1

(E
V

-A
)

T
2O

F
IN

T

(E
V

-A
)

T
2U

F
IN

T

(E
V

-A
)

T
2C

IN
T

(E
V

-A
)

T
2P

IN
T

(E
V

-A
)

4
R

es
er

ve
d

T
3O

F
IN

T

(E
V

-B
)

T
3

U
F

IN
T

(E
V

-B
)

T
3C

IN
T

(E
V

-B
)

T
3P

IN
T

(E
V

-B
)

C
M

P
6I

N
T

(E
V

-B
)

C
M

P
5I

N
T

(E
V

-B
)

C
M

P
4

IN
T

(E
V

-B
)

5
R

es
er

ve
d

C
A

P
IN

T
6

(E
V

-B
)

C
A

P
IN

T
5

(E
V

-B
)

C
A

P
IN

T
4

(E
V

-B
)

T
4O

F
IN

T

(E
V

-B
)

T
4U

F
IN

T

(E
V

-B
)

T
4C

IN
T

(E
V

-B
)

T
4P

IN
T

(E
V

-B
)

6
R

es
er

ve
d

R
es

er
ve

d
M

X
IN

T

(M
cB

S
P

)

M
R

IN
T

(M
cB

S
P

)

R
es

er
ve

d
R

es
er

ve
d

S
P

IT
X

IN
TA

(S
P

I)

S
P

IR
X

IN
TA

(S
P

I)

7
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d

8
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d

9
R

es
er

ve
d

R
es

er
ve

d
E

C
A

N
1I

N
T

(C
A

N
)

E
C

A
N

0
IN

T

(C
A

N
)

S
C

IT
X

IN
T

B

(S
C

I-
B

)

S
C

IR
X

IN
T

B

(S
C

I-
B

)

S
C

IT
X

IN
TA

(S
C

I-
A

)

S
C

IR
X

IN
TA

(S
C

I-
A

)

10
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d

11
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d

12
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d

6-8

C281x Hardware Interrupt

The task priority indicates the relative importance tasks associated with
the asynchronous interrupts. If an interrupt triggers a higher-priority
task while a lower-priority task is running, the execution of the
lower-priority task will be suspended while the higher-priority task is
executed. The lowest value represents the highest priority. Note that
the default priority value of the base rate task is 40, so the priority
value for each asynchronously triggered task must be less than 40 for
these tasks to actually cause the suspension of the base rate task.

The preemption flag determines whether a given interrupt is
preemptable or not. Preemption overrides prioritization, such
that a preemptable task of higher priority can be preempted by a
non-preemptable task of lower priority.

Dialog
Box

6-9

C281x Hardware Interrupt

CPU interrupt numbers
Enter a vector of CPU interrupt numbers for the interrupts you
want to process asynchronously.

See the table of C281x Peripheral Interrupt Vector Values for a
mapping of CPU interrupt number to interrupt names.

PIE interrupt numbers
Enter a vector of PIE interrupt numbers for the interrupts you
want to process asynchronously.

See the table of C281x Peripheral Interrupt Vector Values for a
mapping of CPU interrupt number to interrupt names.

Simulink task priorities
Enter a vector of task priorities for the interrupts you want to
process asynchronously.

See the discussion of this block’s “Vectorized Output” on page 6-6
for an explanation of task priorities.

Preemption flags
Enter a vector of preemption flags for the interrupts you want to
process asynchronously.

See the discussion of this block’s “Vectorized Output” on page 6-6
for an explanation of preemption flags.

Enable simulation input
Select this check box if you want to be able to test asynchronous
interrupt processing in the context of your Simulink software
model.

Note Use this check box to enable you to test asynchronous
interrupt processing behavior in Simulink software.

6-10

C281x Hardware Interrupt

References Detailed information interrupt processing is in TMS320x281x DSP
System Control and Interrupts Reference Guide, Literature Number
SPRU078C, available at the Texas Instruments Web site.

See Also The following links to block reference pages require that Target Support
Package is installed.

C281x Software Interrupt Trigger,C281x Timer, Idle Task

6-11

C5000/C6000 Hardware Interrupt

Purpose Interrupt Service Routine to handle hardware interrupt on C5000 and
C6000 processors

Library Embedded IDE Link for TI Code Composer Studio (idelinklib_ticcs)

Description Create interrupt service routines (ISR) in the software generated by the
build process. When you incorporate this block in your model, code
generation results in ISRs on the processor that run the processes
that are downstream from the this block or a Task block connected to
this block.

Dialog
Box

Interrupt numbers
Specify an array of interrupt numbers for the interrupts to install.
The following table provides the valid range for C5xxx and C6xxx
processors:

6-12

C5000/C6000 Hardware Interrupt

Processor Family Valid Interrupt Numbers

C5xxx 2, 3, 5-21, 23

C6xxx 4-15

The width of the block output signal corresponds to the number of
interrupt numbers specified here. Combined with the Simulink
task priorities that you enter and the preemption flag you
enter for each interrupt, these three values define how the code
and processor handle interrupts during asynchronous scheduler
operations.

Simulink task priorities
Each output of the Hardware Interrupt block drives a downstream
block (for example, a function call subsystem). Simulink software
task priority specifies the Simulink priority of the downstream
blocks. Specify an array of priorities corresponding to the
interrupt numbers entered in Interrupt numbers.

Simulink task priority values are required to generate the proper
rate transition code (refer to Rate Transitions and Asynchronous
Blocks). The task priority values are also required to ensure
absolute time integrity when the asynchronous task needs to
obtain real time from its base rate or its caller. Typically, you
assign priorities for these asynchronous tasks that are higher
than the priorities assigned to periodic tasks.

Preemption flags preemptable – 1, non-preemptable – 0
Higher priority interrupts can preempt interrupts that have lower
priority. To allow you to control preemption, use the preemption
flags to specify whether an interrupt can be preempted.

Entering 1 indicates that the interrupt can be preempted.
Entering 0 indicates the interrupt cannot be preempted. When
Interrupt numbers contains more than one interrupt priority,
you can assign different preemption flags to each interrupt by
entering a vector of flag values, corresponding to the order of

6-13

C5000/C6000 Hardware Interrupt

the interrupts in Interrupt numbers. If Interrupt numbers
contains more than one interrupt, and you enter only one flag
value in this field, that status applies to all interrupts.

In the default settings [0 1], the interrupt with priority 5
in Interrupt numbers is not preemptible and the priority 8
interrupt can be preempted.

Enable simulation input
When you select this option, Simulink software adds an input port
to the Hardware Interrupt block. This port is used in simulation
only. Connect one or more simulated interrupt sources to the
simulation input.

6-14

A

Supported Processors

This appendix provides the details about the processors, simulators, and
software that work with Embedded IDE Link.

• “Supported Platforms” on page A-2

• “Supported Versions of Code Composer Studio” on page A-5

A Supported Processors

Supported Platforms

In this section...

“Product Features Supported by Each Processor or Family” on page A-2

“Coemulation Support” on page A-3

“Supported Processors and Simulators” on page A-3

“Custom Board Support” on page A-4

This appendix lists the processors and simulators that work with the latest
released version of Embedded IDE Link. Generally, the product supports
boards and simulators from a given processor family. In some cases, only the
simulators work, as noted in the tables in the next sections.

Product Features Supported by Each Processor or
Family
The following table indicates which Embedded IDE Link features are
available by processor family.

Features by Processor Family

Automation Interface Component Project Generator
Component Verification

Processor
Family

Debug
Mode RTDX Code Generation

Processor-
in-the-Loop

Real-Time
Execution
Profiling

C28xx Yes Yes Yes Yes Yes

C54xx Yes No No No No

C55xx Yes Yes Yes Yes Yes

C62xx Yes No Yes Yes Yes

C64x and
C64x+

Yes No Yes Yes Yes

A-2

Supported Platforms

Features by Processor Family (Continued)

Automation Interface Component Project Generator
Component Verification

Processor
Family

Debug
Mode RTDX Code Generation

Processor-
in-the-Loop

Real-Time
Execution
Profiling

C67x and
C67x+

Yes No Yes Yes Yes

DM64x Yes No Yes Yes Yes

DM643x Yes No Yes Yes Yes

TMS470R1x Yes No No No No

TMS470R2x Yes No No No No

Coemulation Support
An added feature for OMAP processors is coemulation for the two processors
that comprise the OMAP. Embedded IDE Link supports coemulation or direct
multiprocessor support for the TMS470R2x (TI-enhanced ARM925) and
TMS320C55x DSP in OMAP 1510 and OMAP 5910.

Supported Processors and Simulators
Embedded IDE Link for has been tested on the following processors and
boards produced by TI and others.

• TMS320C2000

- Simulators (C28x)

- C2808 eZdsp, C2812 eZdsp, C2833x Floating-Point Processors

• TMS320C5000

- Simulators (C54x, C55x)

- C5510 DSK

- C5416 DSK, C5402 DSK

A-3

A Supported Processors

• TMS320C6000

- Simulators (C62x, C64x, C67x)

- C6713 DSK, C6711 DSK, C6701 EVM

- C6416 DSK

- DM64x

- DM643x

- C6211 DSK

• OMAP

- OMAP 1510

- OMAP 5910

• TMS470Rxx

- Boards and simulators based on the TMS470R1x processor

- Boards and simulators based on the TMS470R2x processor

Custom Board Support
You can use Embedded IDE Link with your custom board if:

• It uses one or more of the supported processors in the preceding list or if
it is in the Processor list of the Target Preferences/Custom Board block
for your processor family.

• You are able to use Code Composer Studio IDE to interact with your
board/processor combination.

you should be able to use Embedded IDE Link with your hardware.

A-4

Supported Versions of Code Composer Studio

Supported Versions of Code Composer Studio
The following table lists versions of Embedded IDE Link and the versions of
Code Composer Studio they support.

Embedded
IDE Link
Version

MATLAB
Release

Supported Version of Code Composer
Studio

4.0 R2009b CCS 3.3 for
C64x+,C6000,C5000,C2000,OMAP processors
(tested on CCS 3.3 SR10)

3.4 R2009a CCS 3.3 for
C64x+,C6000,C5000,C2000,OMAP processors

3.3 R2008b Only CCS 3.3 with DSP/BIOS
5.32.01 or 5.32.05 (not 5.32.00)
(C64x+,C6000,C5000,C2000,OMAP)
CCS 3.3 SR7 has a bug and is not supported

3.2 R2008a Only CCS 3.3 with DSP/BIOS 5.3 (not 5.32.00)

3.1 R2007b Only CCS 3.3 with DSP/BIOS 5.3

3.0 R2007a • CCS 3.2 for C64x+ processors

• CCS 3.1 for C2000, C5000, C6000, and
OMAP processors

2.1 R2006b • CCS 3.2 for C64x+ processors

• CCS 3.1 for C2000, C5000, C6000, and
OMAP processors

2.0 R2006a+ CCS 3.1 for C2000, C5000, C6000, and OMAP
processors

1.5 R2006a CCS 3.1 for C2000, C5000, C6000, and OMAP
processors

1.4.2 R14SP3 • CCS 3.0 for C6000 processors

• CCS 2.2 for C2000, C5000, C6000, and
OMAP processors

A-5

A Supported Processors

Embedded
IDE Link
Version

MATLAB
Release

Supported Version of Code Composer
Studio

1.4.1 R14SP2 • CCS 3.0 for C6000 processors

• CCS 2.2 for C2000, C5000, C6000, and
OMAP processors

1.4 R14SP1+ • CCS 3.0 for C6000 processors

• CCS 2.2 for C2000, C5000, C6000, and
OMAP processors

1.3.2 R14SP1 • CCS 2.2 for C2000, C5000, C6000, and
OMAP processors

• CCS 2.12 for C2000, C5000, C6000, and
OMAP processors

1.3.1 R14 • CCS 2.2 for C2000, C5000, C6000, and
OMAP processors

• CCS 2.12 for C2000, C5000, C6000, and
OMAP processors

1.3 R13SP1+ CCS 2.12 for C2000, C5000, C6000, and
OMAP processors

A-6

B

Reported Limitations and
Tips

B Reported Limitations and Tips

Reported Issues

In this section...

“Demonstration Programs Do Not Run Properly Without Correct GEL
Files” on page B-3

“Error Accessing type Property of ticcs Object Having Size Greater Then 1”
on page B-3

“Changing Values of Local Variables Does Not Take Effect” on page B-4

“Code Composer Studio Cannot Find a File After You Halt a Program”
on page B-4

“C54x XPC Register Can Be Modified Only Through the PC Register” on
page B-6

“Working with More Than One Installed Version of Code Composer Studio”
on page B-6

“Changing CCS Versions During a MATLAB Session” on page B-7

“MATLAB Hangs When Code Composer Studio Cannot Find a Board” on
page B-7

“Using Mapped Drives” on page B-9

“Uninstalling Code Composer Studio 3.3 Prevents Embedded IDE Link
From Connecting” on page B-9

“PostCodeGenCommand Commands Do Not Affect Embedded IDE Link
Projects” on page B-10

Some long-standing issues affect the Embedded IDE Link product. When
you are using ticcs objects and the software methods to work with
Code Composer Studio and supported hardware or simulators, recall the
information in this section.

The latest issues in the list appear at the bottom. HIL refers to “hardware in
the loop,” also called processor in the loop (PIL) here and in other applications,
and sometimes referred to as function calls.

B-2

Reported Issues

Demonstration Programs Do Not Run Properly
Without Correct GEL Files
To run the Embedded IDE Link demos, you must load the appropriate GEL
files before you run the demos. For some boards, the demos run fine with the
default CCS GEL file. Some boards need to run device-specific GEL files for
the demos to work correctly.

Here are demos and boards which require specific GEL files.

• Board: C5416 DSK

Demos: rtdxtutorial, rtdxlmsdemo

Emulator: XDS-510

GEL file to load: c5416_dsk.gel

In general, if a demo does not run correctly with the default GEL file, try
using a device-specific GEL file by defining the file in the CCS Setup Utility.

Error Accessing type Property of ticcs Object Having
Size Greater Then 1
When cc is a ticcs object consisting of an array of single ticcs objects such
that

cc
Array of TICCS Objects:

API version : 1.2
Board name : C54x Simulator (Texas Instruments)
Board number : 0
Processor 0 (element 1) : TMS320C5407 (CPU, Not Running)
Processor 0 (element 2) : TMS320C5407 (CPU, Not Running)

you cannot use cc to access the type object. The example syntaxes below
generate errors.

• cc.type

• add(cc.type,'mytypedef','int')

B-3

B Reported Limitations and Tips

To access type without the error, reference the individual elements of cc as
follows:

• cc(1).type

• add(cc(2).type,'mytypedef','int')

Changing Values of Local Variables Does Not Take
Effect
If you halt the execution of your program on your DSP and modify a local
variable’s value, the new value may not be acknowledged by the compiler. If
you continue to run your program, the compiler uses the original value of
the variable.

This problem happens only with local variables. When you write to the local
variable via the Code Composer Studio Watch Window or via a MATLAB
object, you are writing into the variable’s absolute location (register or
address in memory).

However, within the processor function, the compiler sometimes saves
the local variable’s values in an intermediate location, such as in another
register or to the stack. That intermediate location cannot be determined or
changed/updated with a new value during execution. Thus the compiler uses
the old, unchanged variable value from the intermediate location.

Code Composer Studio Cannot Find a File After You
Halt a Program
When you halt a running program on your processor, Code Composer Studio
may display a dialog box that says it cannot find a source code file or a library
file.

When you halt a program, CCS tries to display the source code associated
with the current program counter. If the program stops in a system library
like the runtime library, DSP/BIOS, or the board support library, it cannot
find the source code for debug. You can either find the source code to debug it
or select the Don’t show this message again checkbox to ignore messages
like this in the future.

B-4

Reported Issues

For more information about how CCS responds to the halt, refer the online
Help for CCS. In the online help system, use the search engine to search for
the keywords “Troubleshooting” and “Support.” The following information
comes from the online help for CCS, starting with the error message:

File Not Found
The debugger is unable to locate the source file necessary to enable
source-level debugging for this program.

To specify the location of the source file

1 Click Yes. The Open dialog box appears.

2 In the Open dialog box, specify the location and name of the source file
then click Open.

The next section provides more details about file paths.

Defining a Search Path for Source Files
The Directories dialog box enables you to specify the search path the debugger
uses to find the source files included in a project.

To Specify Search Path Directories

1 Select Option > Customize.

2 In the Customize dialog box, select the Directories tab. Use the scroll
arrows at the top of the dialog box to locate the tab.

The Directories dialog box offers the following options.

• Directories. The Directories list displays the defined search path.
The debugger searches the listed directories in order from top to bottom.

If two files have the same name and are located in different directories,
the file located in the directory that appears highest in the Directories
list takes precedence.

B-5

B Reported Limitations and Tips

• New. To add a new directory to the Directories list, click New.
Enter the full path or click browse [...] to navigate to the appropriate
directory. By default, the new directory is added to the bottom of the list.

• Delete. Select a directory in the Directories list, then click Delete to
remove that directory from the list.

• Up. Select a directory in the Directories list, then click Up to move
that directory higher in the list.

• Down. Select a directory in the Directories list, then click Down to
move that directory lower in the list.

3 Click OK to close the Customize dialog box and save your changes.

C54x XPC Register Can Be Modified Only Through
the PC Register
You cannot modify the XPC register value directly using regwrite to write into
the register. When you are using extended program addressing in C54x, you
can modify the XPC register by using regwrite to write a 23-bit data value
in the PC register. Along with the 16-bit PC register, this operation also
modifies the 7-bit XPC register that is used for extended program addressing.
On the C54x, the PC register is 23 bits (7 bits in XPC + 16 bits in PC).

You can then read the XPC register value using regread.

Working with More Than One Installed Version of
Code Composer Studio
When you have more than one version of Code Composer Studio installed on
your machine, you cannot select which CCS version MATLAB Embedded IDE
Link attaches to when you create a ticcs object. If, for example, you have
both CCS for C5000 and CCS for C6000 versions installed, you cannot choose
to connect to the C6000 version rather than the C5000 version.

When you issue the command

cc = ticcs

Embedded IDE Link starts the CCS version you last used. If you last used
your C5000 version, the cc object accesses the C5000 version.

B-6

Reported Issues

Workaround
To make your ticcs object access the correct processor:

1 Start and close the appropriate CCS version before you create the ticcs
object in MATLAB.

2 Create the ticcs object using the boardnum and procnum properties to
select your processor, if needed.

Recall that ccsboardinfo returns the boardnum and procnum values for
the processors that CCS recognizes.

Changing CCS Versions During a MATLAB Session
You can use only one version of CCS in a single MATLAB session. Embedded
IDE Link does not support using multiple versions of CCS in a MATLAB
session. To use another CCS version, exit MATLAB software and restart it.
Then create your links to the new version of CCS.

MATLAB Hangs When Code Composer Studio Cannot
Find a Board
In MATLAB software, when you create a ticcs object, the construction
process for the object automatically starts CCS. If CCS cannot find a processor
that is connected to your PC, you see a message from CCS like the following
DSP Device Driver dialog box that indicates CCS could not initialize the
processor.

B-7

B Reported Limitations and Tips

Four options let you decide how to respond to the failure:

• Abort — Closes CCS and suspends control for about 30 seconds. If you
used MATLAB software functions to open CCS, such as when you create
a ticcs object, the system returns control to MATLAB command window
after a considerable delay, and issues this warning:

??? Unable to establish connection with Code Composer Studio.

• Ignore— Starts CCS without connecting to any processor. In the CCS IDE
you see a status message that says EMULATOR DISCONNECTED in the
status area of the IDE. If you used MATLAB to start CCS, you get control
immediately and Embedded IDE Link creates the ticcs object. Because

B-8

Reported Issues

CCS is not connected to a processor, you cannot use the object to perform
processor operations from MATLAB, such as loading or running programs.

• Retry— CCS tries again to initialize the processor. If CCS continues not
to find your hardware processor, the same DSP Device Driver dialog box
reappears. This process continues until either CCS finds the processor or
you choose one of the other options to respond to the warning.

One more option, Diagnostic, lets you enter diagnostic mode if it is enabled.
Usually, Diagnostic is not available for you to use.

Using Mapped Drives
Limitations in Code Composer Studio do not allow you to load programs after
you set your CCS working directory to a read-only mapped drive. When
you set the CCS working directory to a mapped drive for which you do not
have write permissions, you cannot load programs from any location. Load
operations fail with an Application Error dialog box.

The following combination of commands does not work:

1 cd(cc,'mapped_drive_letter') % Change CCS working directory to
read-only mapped drive.

2 load(cc,'program_file') % Loading any program fails.

Uninstalling Code Composer Studio 3.3 Prevents
Embedded IDE Link From Connecting
Description On a machine where CCS V3.3 and CCS V3.1 are installed,
uninstalling V3.3 makes V3.1 unusable from MATLAB. This is because the
CCS V3.3 uninstaller leaves stale registry entries in the Windows Registry
that prevent MATLAB from connecting to CCS V3.1.

Texas Instruments has documented this uninstall
problem and the solution on their Web site at
http://www-k.ext.ti.com/SRVS/CGI-BIN/WEBCGI.EXE/,/?St=76,E=0000000000008373418

Updated information on this issue may also be available
from the Bug Reports section of www.mathworks.com at
http://www.mathworks.com/support/bugreports/379676

B-9

http://www-k.ext.ti.com/SRVS/CGI-BIN/WEBCGI.EXE/,/?St=76,E=0000000000008373418,K=3818,Sxi=9,Case=obj(52837)
http://www.mathworks.com/support/bugreports/379676

B Reported Limitations and Tips

PostCodeGenCommand Commands Do Not Affect
Embedded IDE Link Projects
PostCodeGenCommand commands, such as the addCompileFlags and
addLinkFlags functions in the Real-Time Workshop BuildInfo API do not
affect code generated by Embedded IDE Link.

Use the ’Compiler options string’ and ’Linker options string’ parameters in
the Configuration Parameters > Embedded IDE Link pane instead. You
can also automate this process using a model callback to SET_PARAM the
’CompilerOptionsStr’ and ’LinkerOptionsStr’ parameters.

B-10

Index

IndexA
apiversion 2-48
Archive_library 3-15

B
block limitations using model reference 3-16
boardnum 2-49
boards, selecting 3-3

C
C280x/C28x3x hardware interrupt block 6-2
C280x/C28x3x Hardware Interrupt block 6-2
c281x hardware interrupt block 6-6
C6000 model reference 3-14
CCS IDE objects

tutorial about using 2-2
ccsappexe 2-49
Code Composer Studio

MATLAB API 1-3
custom data types 2-54
custom type definitions 2-54

D
Data Type Manager 2-54
data types

managing 2-54

E
Embedded IDE Link™

listing link functions 2-41
export filters to CCS IDE from FDATool 4-1

select the export data type 4-6
set the Export mode option 4-5

F
FDATool. See export filters to CCS IDE from

FDATool
functions

overloading 2-45

H
Hardware Interrupt block 6-12

I
import filter coefficients from FDATool.. See

FDATool

L
link properties

about 2-46 2-48
apiversion 2-48
boardnum 2-49
ccsappexe 2-49
numchannels 2-49
page 2-50
procnum 2-50
quick reference table 2-46
rtdx 2-51
rtdxchannel 2-52
timeout 2-52
version 2-52

link properties, details about 2-48
links

closing CCS IDE 2-18
closing RTDX 2-38
communications for RTDX 2-29
creating links for RTDX 2-26
details 2-48
introducing the tutorial for using links for

RTDX 2-21
loading files into CCS IDE 2-10

Index-1

Index

quick reference 2-46
running applications using RTDX 2-31
tutorial about using links for RTDX 2-20
working with your processor 2-12

M
managing data types 2-54
model reference 3-14

about 3-14
Archive_library 3-15
block limitations 3-16
modelreferencecompliant flag 3-17
setting build action 3-15
Target Preferences blocks 3-16
using 3-15

modelreferencecompliant flag 3-17

N
numchannels 2-49

O
object

ticcs 2-42
objects

creating objects for CCS IDE 2-8
introducing the objects for CCS IDE

tutorial 2-2
selecting processors for CCS IDE 2-6
tutorial about using Automation Interface

for CCS IDE 2-2
overloading 2-45

P
page 2-50

procnum 2-50
project generation

selecting the board 3-3
properties

link properties 2-46

R
rtdx 2-51
RTDX links

tutorial about using 2-20
rtdxchannel 2-52

S
selecting boards 3-3

T
Target Preferences blocks in referenced

models 3-16
ticcs 2-42
timeout 2-52
tutorials

links for RTDX 2-20
objects for CCS 2-2

typedefs 2-56
about 2-54
adding 2-56
managing 2-56
removing 2-56

V
version 2-52

Index-2

	toc
	Getting Started
	Product Overview
	Automation Interface
	Project Generator
	Verification
	Processor in the Loop Cosimulation
	Execution Profiling

	Product Features Supported for Each Processor Family

	Configuration Information
	Verifying Your Code Composer Studio Installation

	Software Requirements

	Automation Interface
	Getting Started with Automation Interface
	Introducing the Automation Interface Tutorial
	Functions for Working With Embedded IDE Link
	Methods for Working with ticcs Objects
	Methods for Embedded Objects
	Running Code Composer Studio Software on Your Desktop — Visibili
	Running the Interactive Tutorial

	Selecting Your Processor
	Creating and Querying Objects for CCS IDE
	Loading Files into CCS
	Working with Projects and Data
	Closing the Links or Cleaning Up CCS IDE

	Getting Started with RTDX
	Introducing the Tutorial for Using RTDX
	Functions From Objects for CCS IDE
	Functions From the RTDX Class

	Creating the ticcs Objects
	Configuring Communications Channels
	Running the Application
	Closing the Connections and Channels or Cleaning Up
	Listing Functions

	Constructing ticcs Objects
	Example — Constructor for ticcs Objects

	ticcs Properties and Property Values
	Overloaded Functions for ticcs Objects
	ticcs Object Properties
	Quick Reference to ticcs Object Properties
	Details About ticcs Object Properties
	apiversion
	boardnum
	ccsappexe
	numchannels
	page
	procnum
	rtdx
	rtdxchannel
	timeout
	version

	Managing Custom Data Types with the Data Type Manager
	Adding Custom Type Definitions to MATLAB
	To Add a Typedef to MATLAB

	Project Generator
	Introducing Project Generator
	Project Generation and Board Selection
	Project Generator Tutorial
	Creating the Model
	Adding the Target Preferences Block to Your Model
	Specify Configuration Parameters for Your Model
	Setting Solver Parameters
	Setting Real-Time Workshop Code Generation Parameters
	Setting Embedded IDE Link Parameters
	Building Your Project

	Model Reference
	How Model Reference Works
	Model Reference in Simulation
	Model Reference in Code Generation

	Using Model Reference
	Build Action Setting
	Target Preferences Blocks in Reference Models
	Other Block Limitations

	Configuring processors to Use Model Reference

	Exporting Filter Coefficients from FDATool
	About FDATool
	Preparing to Export Filter Coefficients to Code Composer Studio
	Features of a Filter
	Selecting the Export Mode
	Choosing the Export Data Type
	To Choose the Export Data Type
	How FDATool Determines the Export Suggested Data Type

	Exporting Filter Coefficients to Your Code Composer Studio Proje
	Exporting Filter Coefficients from FDATool to the CCS IDE Editor
	Reviewing ANSI C Header File Contents

	Preventing Memory Corruption When You Export Coefficients to Pro
	Allocating Sufficient or Extra Memory for Filter Coefficients
	Example: Using the Exported Header File to Allocate Extra Proces
	Replacing Existing Coefficients in Memory with Updated Coefficie
	Example: Changing Filter Coefficients Stored on Your Processor

	Block Reference
	Block Library: idelinklib_ticcs
	Block Library: idelinklib_common

	Blocks — Alphabetical List
	Supported Processors
	Supported Platforms
	Product Features Supported by Each Processor or Family
	Coemulation Support
	Supported Processors and Simulators
	Custom Board Support

	Supported Versions of Code Composer Studio

	Reported Limitations and Tips
	Reported Issues
	Demonstration Programs Do Not Run Properly Without Correct GEL F
	Error Accessing type Property of ticcs Object Having Size Greate
	Changing Values of Local Variables Does Not Take Effect
	Code Composer Studio Cannot Find a File After You Halt a Program
	File Not Found
	Defining a Search Path for Source Files
	To Specify Search Path Directories

	C54x XPC Register Can Be Modified Only Through the PC Register
	Working with More Than One Installed Version of Code Composer St
	Workaround

	Changing CCS Versions During a MATLAB Session
	MATLAB Hangs When Code Composer Studio Cannot Find a Board
	Using Mapped Drives
	Uninstalling Code Composer Studio 3.3 Prevents Embedded IDE Link
	PostCodeGenCommand Commands Do Not Affect Embedded IDE Link Proj

	Index

	tables
	C281x Peripheral Interrupt Vector Values
	 Features by Processor Family

